Skip to main content
Log in

Microstructural Evolution and Mechanical Properties of Fe-Containing High and Medium Entropy Alloys: Recent Advances and Future Prospects

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Since the first report on high entropy alloys (HEAs) in the year 2004, HEA systems have opened up new avenues in the development of novel materials, where the formation of simple structures could be realized in the multi-principal element alloys. Due to their concentrated alloying concepts, these alloys have shown many exciting properties compared to conventional ones. Despite the promise of HEAs, the research community is still struggling to utilize the concept to design processes and to develop superior alloys. The biggest challenge is the paucity of data and the vast possibility of alloys from where one needs to find the best. These challenges pertain to composition screening of the alloys for specific applications, alloy processing, thermodynamic database and overall cost. In the present work, we have discussed the status and the challenges related to fundamental issues and prospects of Fe-containing high and medium entropy alloys to meet industrial requirements. The results of the selected Fe-containing medium entropy alloys will be discussed with their microstructural evolution and promising mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.

    Article  CAS  Google Scholar 

  2. Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng A 375–377 (2004) 213.

    Article  Google Scholar 

  3. Mukhopadhyay N K, Curr Sci 109 (2015) 665.

    Article  Google Scholar 

  4. Zhang Y, Ting T, Tang Z, Gao M C, Dahmen K A, Liaw P K, and Ping Z, Prog Mater Sci 61 (2014) 1.

    Article  Google Scholar 

  5. Chen J, Zhou X, Wang W, Liu B, Lv Y, and Yang W, J Alloys Compd 760 (2018) 15.

    Article  CAS  Google Scholar 

  6. Steurer W, Mater Charact 162 (2020) 110179.

    Article  CAS  Google Scholar 

  7. Kar S, Srivastava V C, and Mandal G K, J. Alloys Compd. 963 (2023) 171213.

    Article  CAS  Google Scholar 

  8. Otto F, Dlouhý A, Pradeep K G, Kuběnová M, Raabe D, Eggeler G, and George E P, Acta Mater 112 (2016) 40.

    Article  CAS  Google Scholar 

  9. Dasari S, Gwalani B, Jagetia A, Soni V, Gorsse S, and Banerjee R, Sci Rep 10 (2020) 1.

    Article  Google Scholar 

  10. Ng C, Guo S, Luan J, Shi S, and Liu C T, Intermetallics 31 (2012) 165.

    Article  Google Scholar 

  11. Poletti M G, and Battezzati L, ACTA Mater 75 (2014) 297.

    Article  CAS  Google Scholar 

  12. Guo S, Ng C, Lu J, and Liu C T, J Appl Phys 109 (2011) 103505.

    Article  Google Scholar 

  13. Ye Y F, Wang Q, Lu J, Liu C T, and Yang Y, Mater Today 19 (2016) 349.

    Article  CAS  Google Scholar 

  14. Conway P L J, Klaver T P C, Steggo J, and Ghassemali E, Mater Sci Eng A 830 (2022) 142297.

    Article  CAS  Google Scholar 

  15. Beniwal D, and Ray P K, Comput Mater Sci 197 (2021) 110647.

    Article  CAS  Google Scholar 

  16. Kumar J, Jha S, Raturi A, Bajpai A, Sonkusare R, Gurao N P, and Biswas K, Front Mater 9 (2022) 1–13. https://doi.org/10.3389/fmats.2022.868721

    Article  CAS  Google Scholar 

  17. Beniwal D, Jhalak A, and Ray P K, Data-Driven Phase Selection Property Prediction and Force-Field Development in Multi-Principal Element Alloys, Springer, Singapore (2022), p 978.

    Google Scholar 

  18. Bansal G K, Chandan A K, Mandal G K, and Srivastava V C, High Entropy Alloys: An Overview on Current Developments, Taylor and Francis, CRC Press (2020), p 1.

    Book  Google Scholar 

  19. Vaidya M, Muralikrishna G M, and Murty B S, J Mater Res 34 (2019) 664.

    Article  CAS  Google Scholar 

  20. Jain H, Shadangi Y, Shivam V, Chakravarty D, Mukhopadhyay N K, and Kumar D, J Alloys Compd 834 (2020) 155013.

    Article  CAS  Google Scholar 

  21. Shivam V, Sanjana V, and Mukhopadhyay N K, Trans Indian Inst Met 73 (2020) 821.

    Article  CAS  Google Scholar 

  22. Pandey V K, Shadangi Y, Shivam V, Sarma B N, and Mukhopadhyay N K, Philos Mag 102 (2022) 480.

    Article  CAS  Google Scholar 

  23. Singh N, Shadangi Y, Goud G S, Pandey V K, Shivam V, and Mukhopadhyay N K, Trans Indian Inst Met 74 (2021) 2203.

    Article  CAS  Google Scholar 

  24. Shivam V, Shadangi Y, Basu J, and Mukhopadhyay N K, J Alloys Compd 832 (2020) 154826.

    Article  CAS  Google Scholar 

  25. Singh N, Shadangi Y, Shivam V, and Mukhopadhyay N K, J Alloys Compd 875 (2021) 159923.

    Article  CAS  Google Scholar 

  26. Pandey V K, Shadangi Y, Shivam V, Basu J, Chattopadhyay K, Majumdar B, Sarma B N, and Mukhopadhyay N K, Trans Indian Inst Met 74 (2021) 33.

    Article  CAS  Google Scholar 

  27. Chandan A K, Tripathy S, Sen B, Ghosh M, and Chowdhury S G, Scr Mater 199 (2021) 113891.

    Article  CAS  Google Scholar 

  28. Shivam V, Basu J, Shadangi Y, Singh M K, and Mukhopadhyay N K, J Alloys Compd 757 (2018) 87.

    Article  CAS  Google Scholar 

  29. Shivam V, Kar S, Mandal G K, and Srivastava V C, J Alloys Compd 963 (2023) 171261.

    Article  CAS  Google Scholar 

  30. Srivastava V C, Mandal G K, Ciftci N, Uhlenwinkel V, and Mädler L, J Mater Eng Perform 26 (2017) 5906.

    Article  CAS  Google Scholar 

  31. Chen Y, Chang Y, Murakami H, and Gorsse S, Scr. Mater. 187 (2020) 177.

    Article  CAS  Google Scholar 

  32. Yeh A, Tsao T K, Chang Y J, Chang K C, Yeh J W, Chiou M S, Jian S R, Kuo C M, Wang W R, and Murakami H, Int J Metall Mater Eng 1 (2015) 1.

    Google Scholar 

  33. Miracle D B, Tsai M H, Senkov O N, Soni V, and Banerjee R, Scr Mater 187 (2020) 445.

    Article  CAS  Google Scholar 

  34. Senkov O N, Wilks G B, Miracle D B, Chuang C P, and Liaw P K, Intermetallics 18 (2010) 1758.

    Article  CAS  Google Scholar 

  35. Lu J, Chen Y, Zhang H, Li L, Fu L, Zhao X, Guo F, and Xiao P, Corros Sci 170 (2020) 108691.

    Article  CAS  Google Scholar 

  36. Zhang K, He F, Yang Z, Cui D, Li J, Yang Z, Wang J, and Wang Z, J Alloys Compd 866 (2021) 158904.

    Article  CAS  Google Scholar 

  37. Muangtong P, Rodchanarowan A, Chaysuwan D, Chanlek N, and Goodall R, Corros Sci 172 (2020) 108740.

    Article  CAS  Google Scholar 

  38. Dada M, Popoola P, Mathe N, Adeosun S, Pityana S, Aramide O, Malatji N, Lengopeng T, and Ayodeji A, Mater Res Exot Prop Appl (2021). https://doi.org/10.5772/intechopen.96661

    Article  Google Scholar 

  39. Shivam V, Basu J, Manna R, and Mukhopadhyay N K, Metall Mater Trans A 52 (2021) 1777.

    Article  CAS  Google Scholar 

  40. R.C. Reed, The Superalloys fundamentals and applications, 2006.

  41. INCO, High-temperature high-strength nickel-base alloys No. 393, (2020). https://nickelinstitute.org/media/8d93486143182f5/nickel_incopub393_updated-june-2021.pdf

  42. Joseph D M F J, Annasamy M, Cizek P, Vahid A, Hodgson P D, and Barnett M R, Scr Mater 235 (2023) 115630.

    Article  CAS  Google Scholar 

  43. Shivam V, Kar S, Bansal G K, Chandan A K, Sahoo B K, Mandal G K, Mukhopadhyay N K, and Srivastava V C, J Alloys Compd 952 (2023) 170029.

    Article  CAS  Google Scholar 

  44. Zhou Y, Jin X, Zhang L, Du X, and Li B, Mater Sci Eng A 716 (2018) 235.

    Article  CAS  Google Scholar 

  45. Wang M, Lu Y, Wang T, Zhang C, Cao Z, Li T, and Liaw P K, Scr Mater 204 (2021) 114132.

    Article  CAS  Google Scholar 

  46. Lu Y, Dong Y, Jiang H, Wang Z, Cao Z, Guo S, Wang T, Li T, and Liaw P K, Scr Mater 187 (2020) 202.

    Article  CAS  Google Scholar 

  47. Shaysultanov D G, Salishchev G A, Ivanisenko Y V, Zherebtsov S V, Tikhonovsky M A, and Stepanov N D, J Alloys Compd 705 (2017) 756.

    Article  CAS  Google Scholar 

  48. Yin Y, Chen Z, Mo N, Kent D, Riadhi A, En K, Tan Q, Bermingham M, and Zhang M, Mater Sci Eng A 788 (2020) 139580.

    Article  CAS  Google Scholar 

  49. Yao M J, Pradeep K G, Tasan C C, and Raabe D, Scr Mater 72–73 (2014) 5.

    Article  Google Scholar 

  50. Kwesi R, Azeemullah M, Cao Q P, Wang X D, Zhang D X, and Jiang J Z, J. Alloys Compd 851 (2021) 156842.

    Article  Google Scholar 

  51. Wang Z, and Baker I, Mater Lett 180 (2016) 153.

    Article  CAS  Google Scholar 

  52. Jain H, Shadangi Y, Chakravarty D, Dubey A K, and Mukhopadhyay N K, Mater Sci Eng A 856 (2022) 144029.

    Article  CAS  Google Scholar 

  53. Jain H, Shadangi Y, Chakravarty D, Chattopadhyay K, Dubey A K, and Mukhopadhyay N K, Mater Sci Eng A 869 (2023) 144776.

    Article  CAS  Google Scholar 

  54. Su J, Raabe D, and Li Z, Acta Mater 163 (2019) 40.

    Article  CAS  Google Scholar 

  55. Raabe D, Tasan à C C, Springer H, and Bausch M, Steel Res Int 86 (2015) 1127.

    Article  CAS  Google Scholar 

  56. Chen H, Mao H, and Chen Q, Mater Chem Phys 210 (2018) 279.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (VS) would like to acknowledge the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, for providing financial support through a National Post-Doctoral Fellowship (PDF/2021/001657) to conduct research on high entropy alloys. The authors are thankful to the Director, CSIR-National Metallurgical Laboratory, India, for providing the equipment support to carry out the part of the reported work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests and personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivam, V., Kar, S., Mandal, G.K. et al. Microstructural Evolution and Mechanical Properties of Fe-Containing High and Medium Entropy Alloys: Recent Advances and Future Prospects. Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-03194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03194-8

Keywords

Navigation