Skip to main content
Log in

An Investigation on Corrosion Behaviour and Mechanical Properties of Aluminium in Diesel Palm Kernel Biodiesel and Ethanol Environments

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The current research explored the corrosion qualities of aluminium in palm kernel oil biodiesel–diesel–ethanol blends, assessed the major fuel parameters of the fuel mixture before and after contact with aluminium, and analysed the hardness index and tensile strength of the aluminium. The novelty and significance of this study lay in its investigation of the corrosion resistance and mechanical property changes of aluminium under alternate fuel environments, which had previously received little attention. The corrosion rate of B5E10 was found to be almost equal to that of diesel fuel even after up to 900 h of immersion, with corrosion rates of 0.00110 and  0.00097 μm/year, respectively. Scanning electron microscopy along with energy-dispersive X-ray spectroscopy showed the existence of circular pits, suggesting a corrosion attack and elemental composition. The corrosion rate was greatly impacted by the fatty acid concentration, total acid number, and high capacity to attract and hold water. Furthermore, exposure to the B5E10 fuel mix increased the hardness index and tensile strength of aluminium by 2.04%. The findings show that aluminium has excellent resistance to corrosion in diesel–biodiesel–ethanol mixtures, underlining its potential as a suitable material in sustainable fuel blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminium oxide

PKOB:

Palm kernel oil biodiesel

Al(OH)3 :

Aluminium hydroxide

ASTM:

American Society for Testing and Materials

EDS:

Energy-dispersive X-ray spectroscopy

BHN:

Brinell hardness number

PDE:

Palm kernel biodiesel–diesel–ethanol

KOH:

Potassium hydroxide

SEM:

Scanning electron microscopy

MPa:

Megapascal

TAN:

Total acid number

TS:

Tensile strength

References

  1. Hawary M E, Khachani M, Benhiba F, Kaichouh G, Warad I, Guenbour A, Zarrouk A, and Bellaouchou A, Chem Data Collect (2022). https://doi.org/10.1016/j.cdc.2022.100870

    Article  Google Scholar 

  2. Baena L M, and Calderón J A, Heliyon (2020). https://doi.org/10.1016/j.heliyon.2020.e03735

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ellappan S, and Rajendran S, Fuel (2021). https://doi.org/10.1016/j.fuel.2020.118925

    Article  Google Scholar 

  4. Jaliliantabar F, Ghobadian B, Carlucci A P, Najafi G, Mamat R, Ficarella A, Strafella L, Santino A, and De Domenico S, Energy (2020). https://doi.org/10.1016/j.energy.2019.116860

    Article  Google Scholar 

  5. Singh P, Chauhan S R, Goel V, and Gupta A K, J Eng Resour Technol (2019). https://doi.org/10.1115/1.4044058

    Article  Google Scholar 

  6. Oni B A, Sanni S E, Ezurike B O, and Okoro E E, Alex Eng J (2022). https://doi.org/10.1016/j.aej.2022.01.005

    Article  Google Scholar 

  7. Chandran D, Raviadaran R, Lau H L N, Numan A, Elumalai P V, and Samuel O D, Eng Fail Anal (2023). https://doi.org/10.1016/j.engfailanal.2023.107129

    Article  Google Scholar 

  8. Deb B K, and Chakraborti P, Mater Today Proceed (2023). https://doi.org/10.1016/j.matpr.2023.05.345

    Article  Google Scholar 

  9. Lee C C, Tran M V, Tan B T, Scribano G, and Chong C T, Fuel (2021). https://doi.org/10.1016/j.fuel.2020.119749

    Article  Google Scholar 

  10. Pradelle F, Silva S, Rosa A, Turkovics F, and Nohra R, Fuel (2019). https://doi.org/10.1016/j.fuel.2019.03.087

    Article  Google Scholar 

  11. Chen X R, Cai L Z, Zhang D, Li M, Ran Y, and Ping W V, Trans Indian Inst Met (2022). https://doi.org/10.1007/s12666-022-02673-8

    Article  Google Scholar 

  12. Saikiran A, Premchand C P, Manojkumar P A, Lokeshkumar E, Rama Krishna L, and Rameshbabu N, Trans Indian Inst Met (2022). https://doi.org/10.1007/s12666-021-02475-4

    Article  Google Scholar 

  13. Yeşilyurt M K, Öner İV, and Yılmaz E Ç, Pamukkale Univ J Eng Sci (2019). https://doi.org/10.5505/pajes.2018.01885

    Article  Google Scholar 

  14. Hoang AT, Tabatabaei M, Aghbashlo M, Energy Sources Recovery, Utilization, and Environmental Effects (2019). doi https://doi.org/10.1080/15567036.2019.1623346

  15. Fardilah V A, Pusparizkita Y M, Aslan C, Schmahl W W, Kaliwoda M, Setiadi T, Devianto H, Harimawan A, and Bayuseno A P, J Bio Tribo Corros (2022). https://doi.org/10.1007/s40735-022-00693-x

    Article  Google Scholar 

  16. Shahabuddin M, Mofijur M, Shuvho Md B A, Chowdhury M A K, Kalam M A, Masjuki H H, and Chowdhury M A, Energies (2021). https://doi.org/10.3390/en14144352

    Article  Google Scholar 

  17. Dharma, S., Silitonga, A.S., Shamsuddin, A.H., Sebayang, A.H., Milano, J., Sebayang, R., Sarjianto, Ibrahim, H., Bahri, N., Ginting, B., Damanik, N. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (2019). https://doi.org/10.1080/15567036.2019.1668883

  18. Sangeetha G, Saratha R, Priya SV, Kalapriya K, In: AIP Conf Proceed (2022). https://doi.org/10.1063/5.0109213

  19. HeoyGeok H, Wei Sze Hwang J, Yew Heng T, Chuah H G, Yeoh J J J, and Teh J S, J Adv Res Fluid Mech Thermal Sci (2020). https://doi.org/10.37934/arfmts.75.1.94103

    Article  Google Scholar 

  20. Rocabruno-Valdés C I, Hernández J A, Muñoz-Ledo R, and Salinas-Bravo V M, Int J Electrochem Sci (2020). https://doi.org/10.20964/2020.01.05

    Article  Google Scholar 

  21. Alves S M, Dutra-pereira F K, and Bicudo T C, Fuel (2019). https://doi.org/10.1016/j.fuel.2019.03.097

    Article  Google Scholar 

  22. Fazal M A, Rubaiee S, Al-Zahrani A, and Ghazali S, Fuel (2022). https://doi.org/10.1016/j.fuel.2021.122341

    Article  Google Scholar 

  23. Fazal M A, Suhaila N R, Haseeb A S M A, Rubaiee S, and Al-Zahrani A, J Clean Prod (2018). https://doi.org/10.1016/j.jclepro.2017.10.144

    Article  Google Scholar 

  24. Nguyen X P, and Vu H N, Int J Renew Eng Dev (2019). https://doi.org/10.14710/ijred.8.2.119-132

    Article  Google Scholar 

  25. Samuel O D, and Gulum M, Chem Eng Commun (2018). https://doi.org/10.1080/00986445.2018.1519508

    Article  Google Scholar 

  26. Kugelmeier C L, Monteiro M R, Ferreira R, Kuri S E, Sordi V L, and Alberto C, Energy (2021). https://doi.org/10.1016/j.energy.2021.120344

    Article  Google Scholar 

  27. Jin D, Zhou X, Wu P, Jiang L, and Ge H, Renew Eng (2015). https://doi.org/10.1016/j.renene.2015.03.022

    Article  Google Scholar 

  28. Thangarasu V, and Anand R, Adv Biofuels (2019). https://doi.org/10.1016/b978-0-08-102791-2.00017-9

    Article  Google Scholar 

  29. Thangavelu S K, Piraiarasi C, Ahmed A S, and Ani F N, Adv Mater Res (2015). https://doi.org/10.4028/www.scientific.net/amr.1098.44

    Article  Google Scholar 

  30. Deshpande S, Joshi A, Vagge S, and Anekar N, Mater Today Proceed (2020). https://doi.org/10.1016/j.matpr.2019.12.277

    Article  Google Scholar 

  31. Fernandes D M, Squissato A L, Lima A F, Richter E M, and Munoz R A A, Renew Eng (2019). https://doi.org/10.1016/j.renene.2019.03.034

    Article  Google Scholar 

  32. Fazal M A, Haseeb A S M A, and Masjuki H H, Fuel Process Technol (2010). https://doi.org/10.1016/j.fuproc.2010.04.016

    Article  Google Scholar 

  33. Dharma S, Ong H C, Masjuki H H, Sebayang A H, and Silitonga A S, Eng Convers Manag (2016). https://doi.org/10.1016/j.enconman.2016.08.072

    Article  Google Scholar 

  34. Chandran D, Renew Eng (2020). https://doi.org/10.1016/j.renene.2019.08.040

    Article  Google Scholar 

  35. Deyab M A, Corrêa R G C, Mazzetto S E, Dhmees A S, and Mele G, Ind Crops Prod (2019). https://doi.org/10.1016/j.indcrop.2018.12.053

    Article  Google Scholar 

  36. Komariah L N, Arita S, Prianda B E, and Dewi T K, Eng Sci (2023). https://doi.org/10.1016/j.jksues.2021.03.016

    Article  Google Scholar 

  37. Deshpande S, Joshi A, Vagge S, and Anekar N, Eng Fail Anal (2019). https://doi.org/10.1016/j.engfailanal.2019.07.060

    Article  Google Scholar 

Download references

Acknowledgements

The authors convey their gratefulness to the Central Instrument Laboratory, Tripura University for making their ZEISS Sigma 300 scanning electron microscope available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijoy Kumar Deb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, B.K., Chakraborti, P. An Investigation on Corrosion Behaviour and Mechanical Properties of Aluminium in Diesel Palm Kernel Biodiesel and Ethanol Environments. Trans Indian Inst Met 77, 595–605 (2024). https://doi.org/10.1007/s12666-023-03153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03153-3

Keywords

Navigation