Skip to main content
Log in

Evolution of 307 L Stainless Steel Corrosion on the Oxidative Stability of Biodiesel During Storage

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The present work aims to examine the link between biodiesel degradation and the corrosion behavior of the 307 L stainless steel used for its storage. Biodiesel was produced from soybean waste cooking oil (SWCO) by trans-esterification process based on a heterogeneous catalyst and methanol. 307 L stainless steel was used to assess the metal surface corrosion after direct contact with the biofuel. The different changes in the biodiesel composition were investigated by FTIR, GS-MS, and UV-absorbance, while the corrosion effect was evaluated by electrochemical methods, SEM/EDS microscopy techniques, X-ray diffraction (XRD) analysis, and UV–Vis–NIR absorbance. The results reveal a weak influence of methyl ester on metal degradation, indicating a low corrosion rate with a localized micro pitting on its surface. Moreover, flame atomic absorption spectroscopy (FAAS) showed the existence of a diminutive number of metal ions, and the electrochemical assays such as electrochemical impedance spectroscopy (EIS) and the polarization curves (PC) exhibited a great corrosion resistance of the 307 L stainless steel by the formation of a passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yao R, Li B, Steemers K (2005) Energy policy and standard for built environment in China. Renew Energy 30:1973–1988. https://doi.org/10.1016/j.renene.2005.01.013

    Article  Google Scholar 

  2. Sims REH (2003) Bioenergy to mitigate for climate change and meet the needs of society, the economy and the environment. Mitig Adapt Strateg Glob Chang 8:349–370. https://doi.org/10.1023/B:MITI.0000005614.51405.ce

    Article  Google Scholar 

  3. Dunn RO (2002) Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel), JAOCS. J Am Oil Chem Soc 79:915–920. https://doi.org/10.1007/s11746-002-0579-2

    Article  CAS  Google Scholar 

  4. Jain S, Sharma MP (2010) Stability of biodiesel and its blends: a review. Renew Sustain Energy Rev 14:667–678. https://doi.org/10.1016/j.rser.2009.10.011

    Article  CAS  Google Scholar 

  5. Sarin A, Arora R, Singh NP, Sharma M, Malhotra RK (2009) Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy 34:1271–1275. https://doi.org/10.1016/j.energy.2009.05.018

    Article  CAS  Google Scholar 

  6. Wang Y, Ou S, Liu P, Zhang Z (2007) Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers Manag 48:184–188. https://doi.org/10.1016/j.enconman.2006.04.016

    Article  CAS  Google Scholar 

  7. Hanna M, Fangrui M (1999) Biodiesel production: a review 1. Bioresour Technol 70:1–15

    Article  Google Scholar 

  8. Seffati K, Honarvar B, Esmaeili H, Esfandiari N (2019) Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel 235:1238–1244. https://doi.org/10.1016/j.fuel.2018.08.118

    Article  CAS  Google Scholar 

  9. Ali RM, Elkatory MR, Hamad HA (2020) Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel 268:117297. https://doi.org/10.1016/j.fuel.2020.117297

    Article  CAS  Google Scholar 

  10. Ahmmad MS, Hassan MBH, Kalam MA (2018) Comparative corrosion characteristics of automotive materials in Jatropha biodiesel. Int J Green Energy 15:393–399. https://doi.org/10.1080/15435075.2018.1464925

    Article  CAS  Google Scholar 

  11. Hoang AT, Tabatabaei M, Aghbashlo M (2019) A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines. Energy Sources Part A. https://doi.org/10.1080/15567036.2019.1623346

    Article  Google Scholar 

  12. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268. https://doi.org/10.1016/j.biortech.2008.06.039

    Article  CAS  Google Scholar 

  13. Hu E, Xu Y, Hu X, Pan L, Jiang S (2012) Corrosion behaviors of metals in biodiesel from rapeseed oil and methanol. Renew Energy 37:371–378. https://doi.org/10.1016/j.renene.2011.07.010

    Article  CAS  Google Scholar 

  14. Torsner E (2010) Solving corrosion problems in biofuels industry. Corros Eng Sci Technol 45:42–48. https://doi.org/10.1179/147842209X12579401586726

    Article  CAS  Google Scholar 

  15. Bondioli P, Gasparoli A, Bella LD, Tagliabue S, Toso G (2003) Biodiesel stability under commercial storage conditions over one year. Eur J Lipid Sci Technol 105:735–741. https://doi.org/10.1002/ejlt.200300783

    Article  CAS  Google Scholar 

  16. Knothe G, Dunn RO (2003) Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. JAOCS J Am Oil Chem Soc 80:1021–1026. https://doi.org/10.1007/s11746-003-0814-x

    Article  CAS  Google Scholar 

  17. Lepri FG, Chaves ES, Vieira MA, Ribeiro AS, Curtius AJ, DeOliveira LCC, DeCampos RC (2011) Determination of trace elements in vegetable oils and biodiesel by atomic spectrometric techniques: a review. Appl Spectrosc Rev 46:175–206. https://doi.org/10.1080/05704928.2010.529628

    Article  CAS  Google Scholar 

  18. Ferreira SLC, Silva LOB, de Santana FA, Junioro MMS, Matos GD, dos Santos WNL (2013) A review of reflux systems using cold finger for sample preparation in the determination of volatile elements. Microchem J 106:307–310. https://doi.org/10.1016/j.microc.2012.08.015

    Article  CAS  Google Scholar 

  19. Lyra FH, Carneiro MTWD, Brandão GP, Pessoa HM, de Castro EV (2010) Determination of Na, K, Ca and Mg in biodiesel samples by flame atomic absorption spectrometry (F AAS) using microemulsion as sample preparation. Microchem J 96:180–185. https://doi.org/10.1016/j.microc.2010.03.005

    Article  CAS  Google Scholar 

  20. Antunes GA, Dos Santos HS, Da Silva YP, Silva MM, Piatnicki CMS, Samios D (2017) Determination of iron, copper, zinc, aluminum, and chromium in biodiesel by flame atomic absorption spectrometry using a microemulsion preparation method. Energy Fuels 31:2944–2950. https://doi.org/10.1021/acs.energyfuels.6b03360

    Article  CAS  Google Scholar 

  21. Kumar AVR, Nigam R, Monga SS, Mathur GN (2002) Effect of inhibitors on the nature of corrosion products of mild steel by Mossbauer and FTIR spectroscopy. Anti-Corrosion Methods Mater 49:111–117. https://doi.org/10.1108/00035590210419353

    Article  CAS  Google Scholar 

  22. Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soybean oil 1. J Am Oil Chem Soc 63:1375–1380. https://doi.org/10.1007/BF02679606

    Article  CAS  Google Scholar 

  23. Refaat AA, Attia NK, Sibak HA, El Sheltawy ST, ElDiwani GI (2008) Production optimization and quality assessment of biodiesel from waste vegetable oil. Int J Environ Sci Technol 5:75–82. https://doi.org/10.1007/BF03325999

    Article  CAS  Google Scholar 

  24. Barabas I, Todoru I-A (2011) Biodiesel quality, standards and properties. Biodiesel-Qual Emiss By-Prod. https://doi.org/10.5772/25370

    Article  Google Scholar 

  25. Bunyakiat K, Makmee S, Sawangkeaw R, Ngamprasertsith S (2006) Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol. Energy Fuels 20:812–817. https://doi.org/10.1021/ef050329b

    Article  CAS  Google Scholar 

  26. Ramesh Kumar AV, Nigam RK, Monga SS, Mathur GN (2002) Effect of inhibitors on the nature of corrosion products of mild steel by Mossbauer and FTIR spectroscopy. Anti-Corr Methods Mater 49:111–117. https://doi.org/10.1108/00035590210419353

    Article  CAS  Google Scholar 

  27. Kara K, Ouanji F, El Mostapha L, El Mahi M, Kacimi M, Ziyad M (2017) Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. J Egypt Pet. https://doi.org/10.1016/j.ejpe.2017.07.010

    Article  Google Scholar 

  28. Dwivedi G, Sharma MP (2014) Impact of antioxidant and metals on biodiesel stability-a review. J Mater Environ Sci 5:1412–1425

    Google Scholar 

  29. Jüttner K, Lorenz WJ (1991) Electrochemical impedance spectroscopy (EIS)of corrosion processes on inhomogeneous surfaces. Mater Sci Forum 44–45:191–204.

    Article  Google Scholar 

  30. Luo M, Zhang RY, Zheng Z, Wang JL, Ji JB (2012) Impact of some natural derivatives on the oxidative stability of soybean oil based biodiesel. J Braz Chem Soc 23:241–246. https://doi.org/10.1590/S0103-50532012000200008

    Article  CAS  Google Scholar 

  31. Rondero-Daniel E (2009) Aluminum and stainless steel corrosion in ethanol and KOH solutions. Rev Mex Física 55:72–75

    CAS  Google Scholar 

  32. Kumari PP, Rao SA, Shetty P (2014) Corrosion inhibition of mild steel in 2M HCl by a schiff base derivative. Procedia Mater Sci 5:499–507. https://doi.org/10.1016/j.mspro.2014.07.293

    Article  CAS  Google Scholar 

  33. Nakamura T, Homma K, Tachibana K (2011) Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition. J Nanosci Nanotechnol 11:8408–8411. https://doi.org/10.1166/jnn.2011.5092

    Article  CAS  Google Scholar 

  34. Fazal MA, Haseeb ASMA, Masjuki HH (2011) Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel. Energy 36:3328–3334. https://doi.org/10.1016/j.energy.2011.03.028

    Article  CAS  Google Scholar 

  35. Focke WW, Van Der Westhuizen I, Oosthuysen X (2016) Biodiesel oxidative stability from Rancimat data. Thermochim Acta 633:116–121. https://doi.org/10.1016/j.tca.2016.03.023

    Article  CAS  Google Scholar 

  36. Guillamet R, Lenglet M, Adam F (1992) Reflectance spectroscopy of oxides films α-Cr2O3 and α-Fe2O3 on iron. Solid State Commun 81:633–637. https://doi.org/10.1016/0038-1098(92)90609-D

    Article  CAS  Google Scholar 

  37. Szalai Z, Kiss K, Jakab G, Sipos P, Belucz B, Németh T (2013) The use of UV-VIS-NIR reflectance spectroscopy to identify iron minerals. Astron Nachrichten 334:940–943. https://doi.org/10.1002/asna.201211965

    Article  CAS  Google Scholar 

  38. Leone N, Mercurio M, Grilli E, Leone AP, Langella A, Buondonno A (2011) Potential of vis-NIR reflectance spectroscopy for the mineralogical characterization of synthetic gleys: a preliminary investigation. Period Di Mineral 80:433–453. https://doi.org/10.2451/2011PM0029

    Article  Google Scholar 

  39. Le Calvar M, Lenglet M (1989) UV-Vis-NIR and FTIR reflectance studies of the initial stage of oxidation of 80 Ni-20 Cr alloy. Stud Surf Sci Catal 48:575–580. https://doi.org/10.1016/S0167-2991(08)60718-1

    Article  Google Scholar 

  40. Schneider C, Porter NA, Brash AR (2008) Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem 283:15539–15543. https://doi.org/10.1074/jbc.R800001200

    Article  CAS  Google Scholar 

  41. Frankel EN, Huang SW, Kanner J, German JB (1994) Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsions. J Agric Food Chem 42:1054–1059. https://doi.org/10.1021/jf00041a001

    Article  CAS  Google Scholar 

  42. Dantas MB, Albuquerque AR, Barros AK, Filho MGR, Filho NRA, Sinfrônio FSM, Rosenhaim R, Soledade LEB, Santos IMG, Souza AG (2011) Evaluation of the oxidative stability of corn biodiesel. Fuel 90:773–778. https://doi.org/10.1016/j.fuel.2010.09.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Khachani or A. Zarrouk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hawary, M., Khachani, M., Kaichouh, G. et al. Evolution of 307 L Stainless Steel Corrosion on the Oxidative Stability of Biodiesel During Storage. J Bio Tribo Corros 7, 143 (2021). https://doi.org/10.1007/s40735-021-00586-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00586-5

Keywords

Navigation