Skip to main content
Log in

Influence of Austenitization Temperature on Tensile Properties and Impact Toughness of Niobium Micro-alloyed Carbide-Free Bainitic Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Carbide-free bainitic steels are known for their very high strength because of their fine nanoscale hard bainitic ferrite and inter-layer ductile retained austenite. The mechanical properties of these steels are influenced by the size, fraction, and morphology of constituent bainite and retained austenite phases. Prior austenite microstructure plays an important role in determining the morphology and volume fraction of bainite and retained austenite resulting from the austempering treatment. In the present study, mechanical properties of two high-carbon, high-silicon, carbide-free bainitic steels with and without niobium addition austenitized at three different temperatures (900 °C, 970 °C, and 1050 °C) and austempered at 300 °C for 12 h are reported. Both the steels show a decrease in total elongation and Charpy V-notch impact toughness with increasing austenitization temperature. Niobium addition significantly refines the prior austenitic grain size at any given austenitization temperature, which improves total elongation and Charpy V-notch impact toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhadeshia H K D H, Mater Sci Forum 500 (2005) 63.

    Article  Google Scholar 

  2. Caballero F G, Bhadeshia H K D H, Mawella K J A, Jones D G, and Brown P, Mater Sci Technol 18 (2002) 279. https://doi.org/10.1179/026708301225000725

    Article  CAS  Google Scholar 

  3. Bhadeshia H K D H, Proc R Soc A Math Phys Eng Sci 466 (2010) 3.

    CAS  Google Scholar 

  4. Peet M J, Fielding L C D, Hamedany A A, Rawson M, Hill P, and Bhadeshia H K D H, Mater Sci Technol 33 (2017) 1171. https://doi.org/10.1080/02670836.2016.1271522

    Article  CAS  Google Scholar 

  5. Tsai Y T, Chang H T, Huang B M, Huang C Y, and Yang J R, Mater Charact 107 (2015) 63. https://doi.org/10.1016/j.matchar.2015.06.037

    Article  CAS  Google Scholar 

  6. Wu B B, Wang X L, Wang Z Q, Zhao J X, Jin Y H, Wang C S, Shang C J, and Misra R D, Mater Sci Eng A 745 (2019) 126.

    Article  CAS  Google Scholar 

  7. Zhang C, Wang Q, Ren J, Li R, Wang M, Zhang F, and Sun K, Mater Sci Eng A 534 (2012) 339.

    Article  CAS  Google Scholar 

  8. Chunfang W, Maoqiu W, Jie S H I, Weijun H U I, and Han D, J Mater Sci Technol 23 (2007) 659.

    Google Scholar 

  9. Gwon H, Kim J-K, Shin S, Cho L, and De Cooman B C, Mater Sci Eng A 696 (2017) 416.

    Article  CAS  Google Scholar 

  10. Shams N, Mater Sci Technol 1 (1985) 950.

    Article  CAS  Google Scholar 

  11. Hu F, Hodgson P D, and Wu K M, Mater Lett 122 (2014) 240.

    Article  CAS  Google Scholar 

  12. Zhao J, Li J, Ji H, and Wang T, Materials 10 (2017) 874.

    Article  Google Scholar 

  13. Chhajed B, Mishra K, Singh K, and Singh A, Mater Charact 192 (2022) 112214. https://doi.org/10.1016/J.MATCHAR.2022.112214

    Article  CAS  Google Scholar 

  14. de Andrés C G, Caballero F G, Capdevila C, and San Martın D, Mater Charact 49 (2002) 121.

    Article  Google Scholar 

  15. De Andres C G, Bartolomé M J, Capdevila C, San Martın D, Caballero F G, and López V, Mater Charact 46 (2001) 389.

    Article  Google Scholar 

  16. Ogino Y, Tanida H, Kitaura M, and Adachi A, Tetsu-to-Hagané 57 (1971) 533.

    Article  CAS  Google Scholar 

  17. Speer J G, and Hansen S S, Metall Trans A 20 (1989) 25. https://doi.org/10.1007/BF02647491

    Article  Google Scholar 

  18. Garcia-Mateo C, Caballero F G, Miller M K, and Jiménez J A, J Mater Sci 47 (2012) 1004.

    Article  CAS  Google Scholar 

  19. Singh S B, and Bhadeshia H K D H, Mater Sci Eng A 245 (1998) 72. https://doi.org/10.1016/S0921-5093(97)00701-6

    Article  Google Scholar 

  20. Wang Z, Wu Q, Zhou W, He F, Yu C, Lin D, Wang J, and Liu C T, Scr Mater 162 (2019) 468. https://doi.org/10.1016/j.scriptamat.2018.12.022

    Article  CAS  Google Scholar 

  21. Lee S J, and Lee Y K, Scr Mater 52 (2005) 973. https://doi.org/10.1016/j.scriptamat.2005.01.028

    Article  CAS  Google Scholar 

  22. Peet M, and Bhadeshia H K D, Phase Transformations and Complex Properties Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.

  23. Peet M, Babu S S, Miller M K, and Bhadeshia H, Scr Mater 50 (2004) 1277.

    Article  CAS  Google Scholar 

  24. Caballero F G, Garcia-Mateo C, Santofimia M J, Miller M K, and García de Andrés C, Acta Mater 57 (2009) 8. https://doi.org/10.1016/j.actamat.2008.08.041

  25. Yang H S, and Bhadeshia H K D H, Scr Mater 60 (2009) 493. https://doi.org/10.1016/j.scriptamat.2008.11.043

    Article  CAS  Google Scholar 

  26. Van Der Zwaag S, Zhao L, Kruijver S O, and Sietsma J, ISIJ Int 42 (2002) 1565.

    Article  Google Scholar 

  27. Garcia-Mateo C, Caballero F G, Chao J, Capdevila C, and Garcia De Andres C, J Mater Sci 44 (2009) 4617. https://doi.org/10.1007/s10853-009-3704-4

  28. Xiong X C, Chen B, Huang M X, Wang J F, and Wang L, Scr Mater 68 (2013) 321. https://doi.org/10.1016/j.scriptamat.2012.11.003

    Article  CAS  Google Scholar 

  29. Ryu J H, Kim D I, Kim H S, Bhadeshia H K D H, and Suh D W, Scr Mater 63 (2010) 297. https://doi.org/10.1016/j.scriptamat.2010.04.020

    Article  CAS  Google Scholar 

  30. Li X, Lu G, Wang Q, Zhao J, Xie Z, Misra R D K, and Shang C, Metals 12 (2021) 28.

    Article  Google Scholar 

  31. Lan H F, Du L X, Li Q, Qiu C L, Li J P, and Misra R D K, J Alloys Compd 710 (2017) 702.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Director, DMRL for granting permission to publish this paper. The authors wish to thank DRDO for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ponguru Senthil.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest with any third party with respect to the content of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil, P.P., Singh, E., Sukumar, G. et al. Influence of Austenitization Temperature on Tensile Properties and Impact Toughness of Niobium Micro-alloyed Carbide-Free Bainitic Steel. Trans Indian Inst Met 77, 543–552 (2024). https://doi.org/10.1007/s12666-023-03115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03115-9

Keywords

Navigation