Skip to main content
Log in

Microstructure and In Situ Tensile Mechanical Properties of Ti/Al3Ti Composites Prepared by “Explosive Welding + Heat Treatment”

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, Ti/Al3Ti laminated composites were prepared by “explosive welding + heat treatment”. On this basis, the microstructure and the fracture failure process of the laminated composites were analyzed using SEM and the in situ tensile test. The results show that no pure aluminum remains in the laminate composites and the bonding interfaces of the laminate composites still exhibit wavy-like bonding. When the Ti/Al3Ti laminated composites are subjected to continuous horizontal stress, cracks appear in the brittle layers first, and cracks begin to appear in the ductile layers after all the brittle layers fail. And the cracks generated in the brittle Al3Ti layers are diverse, making the Al3Ti layers absorb more horizontal stress. Cracks in the ductile layers will constantly propagate and deflect, thus increasing the toughness of the material. Therefore, the fracture failure mechanism of Ti/Al3Ti laminated composites is the combined action of brittle Al3Ti layers and ductile Ti layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fleischer R L, J Mater Sci 22 (1987) 2281.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  2. Ward-Close C M, Minor R, and Doorbar P J, Intermetallics 4 (1996) 217.

    Article  CAS  Google Scholar 

  3. Wu X, Intermetallics 14 (2006) 1114.

    Article  CAS  Google Scholar 

  4. Jackson A P, Vincent J F V, Briggs D, Crick R A, Davies S F, Hearn M J, and Turner R M, J Mater Sci Lett 5 (1986) 975.

    Article  CAS  Google Scholar 

  5. Adharapurapu R R, Vecchio K S, Jiang F, and Rohatgi A, Metall Mater Trans A 36 (2005) 1595.

    Article  Google Scholar 

  6. Harach D J, and Vecchio K S, Metall Mater Trans A 32 (2001) 1493.

    Article  Google Scholar 

  7. Clegg W J, Kendall K, Alford N M, Button T W, and Birchall J D, Nature 347 (1990) 455.

    Article  CAS  ADS  Google Scholar 

  8. Was G S, and Foecke T, Thin Solid Films 286 (1996) 1.

    Article  CAS  ADS  Google Scholar 

  9. Rohatgi A, Harach D J, Vecchio K S, and Harvey K P, Acta Mater 51 (2003) 2933.

    Article  CAS  ADS  Google Scholar 

  10. Rawers J, and Perry K, J Mater Sci 31 (1996) 3501.

    Article  CAS  ADS  Google Scholar 

  11. Adharapurapu R R, Vecchio K S, Jiang F, and Rohatgi A, Metall Mater Trans A 36 (2005) 3217.

    Article  Google Scholar 

  12. Jiang F C, Kulin R M, and Vecchio K S, JOM 62 (2010) 35. https://doi.org/10.1007/s11837-010-0008-8

    Article  CAS  ADS  Google Scholar 

  13. Zhou P J, Guo C H, Wang E H, Wang Z M, Chen Y, and Jiang F C, Mater Sci Eng A Struct Mater Prop Microstruct Process 665 (2016) 66. https://doi.org/10.1016/j.msea.2016.04.020

    Article  CAS  Google Scholar 

  14. Li T, Jiang F, Olevsky E A, Vecchio K S, and Meyers M A, Mater Sci Eng A Struct Mater Prop Microstruct Process 443 (2007) 1. https://doi.org/10.1016/j.msea.2006.05.037

    Article  CAS  Google Scholar 

  15. Bataev I A, Bataev A A, Mali V I, and Pavliukova D V, Mater Des 35 (2012) 225. https://doi.org/10.1016/j.matdes.2011.09.030

    Article  CAS  Google Scholar 

  16. Lazurenko D V, Bataev I A, Mali V I, Bataev A A, Maliutina I N, Lozhkin V S, Esikov M A, and Jorge A M, Mater Des 102 (2016) 122. https://doi.org/10.1016/j.matdes.2016.04.037

    Article  CAS  Google Scholar 

  17. Pervukhin L B, Kryukov D B, Krivenkov A O, and Chugunov S N, Phys Met Metallogr 118 (2017) 759. https://doi.org/10.1134/s0031918x17080105

    Article  CAS  ADS  Google Scholar 

  18. Solecka M, Mróz S, Petrzak P, Mania I, Szota P, Stefanik A, Garstka T, and Paul H, Arch Civ Mech Eng (2022). https://doi.org/10.1007/s43452-022-00577-4

    Article  Google Scholar 

  19. Vecchio K S, J Miner Met Mater Soc 57 (2005) 25.

    Article  CAS  Google Scholar 

  20. Sato H, Mori A, Kitagawa M, Duraisamy S B, Chiba T, and Watanabe Y, JOM 72 (2020) 57. https://doi.org/10.1007/s11837-019-03896-9

    Article  CAS  ADS  Google Scholar 

  21. Yuan M N, Yao Y H, Han F Z, and Wang Z J, Adv Compos Lett (2020). https://doi.org/10.1177/2633366x20921874

    Article  Google Scholar 

  22. Yan J, Ding H, Huang H, Fu C, and Li F, Mater Sci Eng A 700 (2017) 33. https://doi.org/10.1016/j.msea.2017.05.096

    Article  CAS  Google Scholar 

  23. Ye X X, Imai H, Shen J H, Chen B, Han G Q, Umeda J, Takahashi M, and Kondoh K, J Alloys Compd 694 (2017) 82–92. https://doi.org/10.1016/j.jallcom.2016.09.319

    Article  CAS  Google Scholar 

  24. Sadeghi A, Inoue J, Kyokuta N, and Koseki T, Mater Des 119 (2017) 326. https://doi.org/10.1016/j.matdes.2017.01.078

    Article  CAS  Google Scholar 

  25. Qin L, Wang J, Wu Q, Guo X, and Tao J, J Alloys Compd 712 (2017) 69. https://doi.org/10.1016/j.jallcom.2017.04.063

    Article  CAS  Google Scholar 

  26. Zhang X, Yu Y, Liu B, Zhao Y, Ren J, Yan Y, Cao R, and Chen J, J Alloys Compd 783 (2019) 55–65

    Article  CAS  Google Scholar 

  27. Nie H H, Zheng L W, Kang X P, Hao X W, Li X R, and Liang W, Trans Nonferr Met Soc China 31 (2021) 1656. https://doi.org/10.1016/S1003-6326(21)65605-4

    Article  CAS  Google Scholar 

  28. Lysak V I, and Kuzmin S V, J Mater Process Technol 222 (2015) 356. https://doi.org/10.1016/j.jmatprotec.2015.03.024

    Article  Google Scholar 

  29. Jiang J Y, Jiang F, Zhang M H, Tang Z Q, and Tong M M, J Alloys Compd 831 (2020) 154856.

    Article  CAS  Google Scholar 

  30. Johnson G R, and Holmquist T J, Am Inst Phys 309 (1994) 981.

    CAS  ADS  Google Scholar 

  31. Cao Y, Zhu S, Guo C, Vecchio K S, and Jiang F, Appl Compos Mater 22 (2015) 437.

    Article  CAS  ADS  Google Scholar 

  32. Li T, Grignon F, Benson D J, Vecchio K S, Olevsky E A, Jiang F, Rohatgi A, Schwarz R B, and Meyers M A, Mater Sci Eng A 374 (2004) 10.

    Article  Google Scholar 

  33. Johnson G R, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperature (1983).

  34. Su J H, Han Y W, Ren F Z, Wei S Z, and Chen Z Q, Cailiao Rechuli Xuebao Trans Mater Heat Treat 35 (2014) 196.

    CAS  Google Scholar 

  35. Salem A A, Kalidindi S R, and Semiatin S L, Acta Mater 53 (2005) 3495.

    Article  CAS  ADS  Google Scholar 

  36. Findik F, Mater Des 32 (2011) 1081. https://doi.org/10.1016/j.matdes.2010.10.017

    Article  CAS  Google Scholar 

  37. Zhang J, Intermetallics 18 (2010) 2292. https://doi.org/10.1016/j.intermet.2010.07.020

    Article  CAS  Google Scholar 

  38. Peng L M, Wang J H, Li H, Zhao J H, and He L H, Scr Mater 52 (2005) 243. https://doi.org/10.1016/j.scriptamat.2004.09.010

    Article  CAS  ADS  Google Scholar 

  39. Sun Y-B, Zhao Y-Q, Zhang D, Liu C-Y, Diao H-Y, and Ma C-L, Trans Nonferr Met Soc China 21 (2011) 1722. https://doi.org/10.1016/S1003-6326(11)60921-7

    Article  CAS  Google Scholar 

  40. Jiang Y, Deng C, He Y, Zhao Y, Xu N, Zou J, Huang B, and Liu C T, Mater Lett 63 (2009) 22–24. https://doi.org/10.1016/j.matlet.2008.08.053

    Article  CAS  Google Scholar 

  41. Yuan M N, Li L, and Wang Z J, Vacuum 157 (2018) 481. https://doi.org/10.1016/j.vacuum.2018.09.002

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Science Foundation for Young Scientists of China (Grant Nos. 12002319, 11802274) and Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2020L0273, 2020L0312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, Y., Wu, Y. et al. Microstructure and In Situ Tensile Mechanical Properties of Ti/Al3Ti Composites Prepared by “Explosive Welding + Heat Treatment”. Trans Indian Inst Met 77, 821–830 (2024). https://doi.org/10.1007/s12666-023-03105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03105-x

Keywords

Navigation