Skip to main content
Log in

Role of Surface-Chemistry in Colloidal Processing of Ceramics: A Review

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Colloidal processing of ceramics has gained significant attention in recent years owing to its widespread application in biomedical and various industrial sectors. Polymer-assisted colloidal synthesis offers additional advantages and possibilities for development of advanced ceramic materials. This review enumerates the ancient techniques for ceramic production, the factors influencing the surface chemistry in colloidal processing of ceramics, together with the description of the interparticle forces, such as electrostatic and van der Waals interaction, steric and depletion, that contribute majorly to surface chemistry involved in colloidal processing of ceramics. The literature pertaining to the surface chemical interactions of various ceramic materials with polymeric additives are surveyed. Finally, the developments underlying major advancements in colloidal processing of ceramic materials are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Santhiya et al., 1998 with permission)

Fig. 2
Fig. 3

(Adapted from Santhiya et al., 1999 with permission)

Fig. 4

(Adapted from Saravanan et al., 2006 with permission)

Similar content being viewed by others

References

  1. Owen H, Two Centuries of Ceramic Art in Bristol, Bell and Daldy (1873).

    Google Scholar 

  2. Bechthold M, Kane A, and King N, Ceramic Material Systems: In Architecture and Interior Design, Birkhäuser (2015).

    Book  Google Scholar 

  3. Colombo P, Philos Trans R Soc Math Phys Eng Sci 364 (2006) 109. https://doi.org/10.1098/rsta.2005.1683

    Article  CAS  Google Scholar 

  4. Scharnweber J, Chekhonin P, Oertel C-G, Romberg J, Freudenberger J, Jaschinski J, and Skrotzki W, Adv Eng Mater 21 (2019) 1800210. https://doi.org/10.1002/adem.201800210

    Article  CAS  Google Scholar 

  5. Moreno R, J Eur Ceram Soc 40 (2020) 559. https://doi.org/10.1016/j.jeurceramsoc.2019.10.014

    Article  CAS  Google Scholar 

  6. Chin˜as-Castillo F, and Spikes H A, J Tribol 125 (2003) 552. https://doi.org/10.1115/1.1537752

    Article  CAS  Google Scholar 

  7. Pugh R J, and Bergstrom L, Surface and Colloid Chemistry in Advanced Ceramics Processing, CRC Press (2017).

    Google Scholar 

  8. Bell N S, Monson T C, DiAntonio C, and Wu Y, J Ceram Sci Technol 7 (2016) 1. https://doi.org/10.4416/JCST2015-00025E

    Article  Google Scholar 

  9. Bourgeat-Lami E, J Nanosci Nanotechnol 2 (2002) 1. https://doi.org/10.1166/jnn.2002.075

    Article  CAS  Google Scholar 

  10. Goodwin J, Colloids and Interfaces with Surfactants and Polymers, John Wiley & Sons (2009).

    Google Scholar 

  11. Hiemenz P C, and Rajagopalan R, Principles of Colloid and Surface Chemistry, Revised and Expanded, 3rd Edition (2016). https://doi.org/10.1201/9781315274287

  12. Lange F F, J Am Ceram Soc 72 (1989) 3. https://doi.org/10.1111/j.1151-2916.1989.tb05945.x

    Article  CAS  Google Scholar 

  13. Franks G V, Tallon C, Studart A R, Sesso M L, and Leo S, J Am Ceram Soc 100 (2017) 458. https://doi.org/10.1111/jace.14705

    Article  CAS  Google Scholar 

  14. Blanco López M C, Rand B, and Riley F L, J Eur Ceram Soc 20 (2000) 1587. https://doi.org/10.1016/S0955-2219(99)00241-1

    Article  Google Scholar 

  15. Singh B, Bhattacharjee S, Besra S L, Sengupta D, and Misra V, Trans Indian Ceram Soc 63 (2004) 1. https://doi.org/10.1080/0371750X.2004.11012121

    Article  CAS  Google Scholar 

  16. Colombo P, Mera G, Riedel R, and Sorarù G D, J Am Ceram Soc 93 (2010) 1805. https://doi.org/10.1002/9783527631940.ch57

    Article  CAS  Google Scholar 

  17. Cochran L F, Patent US3360852A, 02 January 1968, Manufacture of Ceramic Bases (1968). https://patents.google.com/patent/US3360852A/en

  18. Glass S J, and Ewsuk K G, MRS Bull 22 (1997) 24. https://doi.org/10.1557/S0883769400034709

    Article  CAS  Google Scholar 

  19. Graham T, Philos Trans R Soc Lond 151 (1861) 183. https://doi.org/10.1098/rstl.1861.0011

    Article  Google Scholar 

  20. Ashley H E, The Colloid Matter of Clay and Its Measurement, USGS Numbered Series: 388, Washington, DC (1909).

  21. Alford N M, Birchall J D, and Kendall K, Nature 330 (1987) 51. https://doi.org/10.1038/330051a0

    Article  CAS  Google Scholar 

  22. Finke T, Gernsbeck M, Eisele U, Bockhorn H, Hartmann M, and Kureti S, Ceram Forum Int 84 (2007) 144.

    Google Scholar 

  23. Johnson S B, Franks G V, Scales P J, Boger D V, and Healy T W, Int J Miner Process 58 (2000) 267. https://doi.org/10.1016/S0301-7516(99)00041-1

    Article  CAS  Google Scholar 

  24. Gibson I, Rosen D, Stucker B, and Khorasani M, in Additive Manufacturing Technologies, (eds) Gibson I, Rosen D, Stucker B, and Khorasani M, Springer, Cham (2021), p 379. https://doi.org/10.1007/978-3-030-56127-7_14

  25. Sadat-Shojai M, and Moghaddas H, J Appl Polym Sci 137 (2020) 49810. https://doi.org/10.1002/app.49810

    Article  CAS  Google Scholar 

  26. Santhiya D, Nandini G, Subramanian S, Natarajan K A, and Malghan S G, Colloids Surf Physicochem Eng Asp 133 (1998) 157. https://doi.org/10.1016/S0927-7757(97)00132-5

    Article  CAS  Google Scholar 

  27. Nobles K P, Janorkar A V, and Williamson R S, J Biomed Mater Res B Appl Biomater 109 (2021) 1909. https://doi.org/10.1002/jbm.b.34835

    Article  CAS  Google Scholar 

  28. Aydemir C, Altay B N, and Akyol M, Color Res Appl 46 (2021) 489. https://doi.org/10.1002/col.22579

    Article  Google Scholar 

  29. Arulvel S, Mallikarjuna Reddy D, Dsilva Winfred Rufuss D, and Akinaga T, Surf Interfaces 27 (2021) 101449. https://doi.org/10.1016/j.surfin.2021.101449

    Article  CAS  Google Scholar 

  30. Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P, and He Y, J Eur Ceram Soc 39 (2019) 661. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  CAS  Google Scholar 

  31. Chaudhary R P, Parameswaran C, Idrees M, Rasaki A S, Liu C, Chen Z, and Colombo P, Prog Mater Sci 128 (2022) 100969. https://doi.org/10.1016/j.pmatsci.2022.100969

    Article  CAS  Google Scholar 

  32. Ryan K R, Down M P, and Banks C E, Chem Eng J 403 (2021) 126162. https://doi.org/10.1016/j.cej.2020.126162

    Article  CAS  Google Scholar 

  33. Leong Y K, Mater Des 15 (1994) 141. https://doi.org/10.1016/0261-3069(94)90113-9

    Article  CAS  Google Scholar 

  34. Israelachvili J N, Intermolecular and Surface Forces, Academic Press (2011).

    Google Scholar 

  35. Barnes H A, Hutton J F, and Walters K, An Introduction to Rheology, Elsevier (1989).

    Google Scholar 

  36. Ninham B W, and Nostro P L, Molecular Forces and Self Assembly: In Colloid, Nano Sciences and Biology, Cambridge University Press (2010).

    Book  Google Scholar 

  37. Hansen R S, and Smolders C A, Colloid and Surface Chemistry in the Mainstream of Modern Chemistry, ACS Publications (1962). https://doi.org/10.1021/ed039p167

    Book  Google Scholar 

  38. Derjaguin B, and Landau L, Prog Surf Sci 43 (1993) 30. https://doi.org/10.1016/0079-6816(93)90013-L

    Article  Google Scholar 

  39. Schulz C, Dreizler A, Ebert V, and Wolfrum J, Handbook of Experimental Fluid Mechanics, Combust. Diagn. (2007).

  40. Sunthar P, in Rheology of Complex Fluids, (eds) Krishnan J M, Deshpande A P, and Kumar P B S, Springer, New York (2010), p 171. https://doi.org/10.1007/978-1-4419-6494-6_8

  41. Ramakrishnan V, Pradip, and Malghan S G, J Am Ceram Soc 79 (1996) 2567. https://doi.org/10.1111/j.1151-2916-1996.tb09017.x

    Article  CAS  Google Scholar 

  42. Ramakrishnan V, Pradip, and Malghan S G, Colloids Surf Physicochem Eng Asp 133 (1998) 135. https://doi.org/10.1016/S0927-7757(97)00135-0

    Article  CAS  Google Scholar 

  43. Ángyán J, Dobson J, Jansen G, and Gould T, London Dispersion Forces in Molecules, Solids and Nano-structures: An Introduction to Physical Models and Computational Methods, Royal Society of Chemistry (2020).

    Google Scholar 

  44. Bergstrom L, in Ceramic Transactions Vol. 51, Ceramic Processing Science and Technology (eds) Hausner H, Messing G L, and Hirano S, American Ceramic Society, Westerville (1995), p 341. https://www.osti.gov/biblio/99151

  45. Bergstrom L, Shinozaki K, Tomiyama H, and Mizutani N, J Am Ceram Soc 80 (1997) 291. https://doi.org/10.1111/j.1151-2916.1997.tb02829.x

    Article  Google Scholar 

  46. Yanez J A, Shikata T, Lange F F, and Pearson D S, J Am Ceram Soc 79 (1996) 2917. https://doi.org/10.1111/j.1151-2916.1996.tb08726.x

    Article  CAS  Google Scholar 

  47. Leong Y K, Scales P J, Healy T W, and Boger D V, Colloids Surf Physicochem Eng Asp 95 (1995) 43. https://doi.org/10.1016/0927-7757(94)03010-W

    Article  CAS  Google Scholar 

  48. Onogi S, and Matsumoto T, Polym Eng Rev 1 (1981) 45.

    CAS  Google Scholar 

  49. Biggs S, and Healy T W, J Chem Soc Faraday Trans 90 (1994) 3415. https://doi.org/10.1039/FT9949003415

    Article  CAS  Google Scholar 

  50. Hunter R J, Foundations of Colloid Science, Oxford University Press (2001).

    Google Scholar 

  51. Kontogeorgis G M, and Kiil S, Introduction to Applied Colloid and Surface Chemistry, Wiley (2016).

    Book  Google Scholar 

  52. Tadros T F, Rheology of Dispersions: Principles and Applications, Wiley (2011).

    Google Scholar 

  53. Somasundaran P, and Runkana V, Int J Miner Process 72 (2003) 33. https://doi.org/10.1016/S0301-7516(03)00086-3

    Article  CAS  Google Scholar 

  54. Stedman S J, Evans J R G, and Woodthorpe J, J Mater Sci 25 (1990) 1833. https://doi.org/10.1007/BF01045394

    Article  CAS  Google Scholar 

  55. Doraiswamy D, Rheol Bull 71 (2002) 1.

    Google Scholar 

  56. Burns J L, Yan Y, Jameson G J, and Biggs S, Colloids Surf Physicochem Eng Asp 162 (2000) 265. https://doi.org/10.1016/S0927-7757(99)00237-X

    Article  CAS  Google Scholar 

  57. Patel P D, and Russel W B, J Rheol 31 (1987) 599. https://doi.org/10.1122/1.549938

    Article  CAS  Google Scholar 

  58. Yan Y, Burns J L, Jameson G J, and Biggs S, Chem Eng J 80 (2000) 23. https://doi.org/10.1016/S1383-5866(00)00073-3

    Article  CAS  Google Scholar 

  59. Runkana V, Somasundaran P, and Kapur P C, Chem Eng Sci 61 (2006) 182. https://doi.org/10.1016/j.ces.2005.01.046

    Article  CAS  Google Scholar 

  60. Moreno R, Adv Appl Ceram 111 (2012) 246. https://doi.org/10.1179/1743676111Y.0000000075

    Article  CAS  Google Scholar 

  61. Pradip, Premachandran R S, and Malghan S G, Bull Mater Sci 17 (1994) 911. https://doi.org/10.1007/BF02757568

    Article  CAS  Google Scholar 

  62. Barroso G, Li Q, Bordia R K, and Motz G, J Mater Chem A 7 (2019) 1936. https://doi.org/10.1039/C8TA09054H

    Article  CAS  Google Scholar 

  63. Santhiya D, Subramanian S, Natarajan K A, and Malghan S G, J Colloid Interface Sci 216 (1999) 43. https://doi.org/10.1006/jcis.1999.6289

    Article  Google Scholar 

  64. Saravanan L, and Subramanian S, Colloids Surf Physicochem Eng Asp 252 (2005) 175. https://doi.org/10.1016/j.colsurfa.2004.10.104

    Article  CAS  Google Scholar 

  65. Dash S, Thakur V N, Kumar A, Mahaling R N, Patel S, Thomas R, Sahoo B, and Pradhan D K, Ceram Int 47 (2021) 33563. https://doi.org/10.1016/j.ceramint.2021.08.265

    Article  CAS  Google Scholar 

  66. Zhao J, Yan C, Liu S, Zhang J, Li S, and Yan Y, J Clean Prod 268 (2020) 122329. https://doi.org/10.1016/j.jclepro.2020.122329

    Article  CAS  Google Scholar 

  67. Ganesh I, Sundararajan G, Olhero S M, Torres P M C, and Ferreira J M F, Ceram Int 36 (2010) 1357.

    Article  CAS  Google Scholar 

  68. Drdlikova K, Maca K, Slama M, and Drdlik D, J Am Ceram Soc 102 (2019) 7137.

    Article  CAS  Google Scholar 

  69. Saravanan L, and Subramanian S, Miner Eng 98 (2016) 213. https://doi.org/10.1016/j.mineng.2016.08.022

    Article  CAS  Google Scholar 

  70. Subbanna M, Kapur P C, and Pradip, Ceram Int 28 (2002) 401.

    Article  CAS  Google Scholar 

  71. Subbanna M, Pradip, and Malghan S G, Chem Eng Sci 53 (1998) 3073. https://doi.org/10.1016/S0009-2509(98)00158-4

    Article  CAS  Google Scholar 

  72. Sakka Y, Tang F, Fudouzi H, and Uchikoshi T, Sci Technol Adv Mater 6 (2005) 915.

    Article  CAS  Google Scholar 

  73. Rayón E, Moreno R, Alcázar C, Salvador M D, Manjón F, Jiménez-Piqué E, and Lanes L, J Am Ceram Soc 96 (2013) 1070. https://doi.org/10.1111/jace.12225

    Article  CAS  Google Scholar 

  74. Chin C H, Muchtar A, Azhari C H, Razali M, and Aboras M, Ceram Int 44 (15), (2018) 18641. https://doi.org/10.1016/j.ceramint.2018.07.090

    Article  CAS  Google Scholar 

  75. Olhero S M, Ganesh I, Torres P M C, Alves F J, and Ferreira J M F, J Am Ceram Soc 92 (2009) 9. https://doi.org/10.1111/j.15512916.2008.02823.x

    Article  CAS  Google Scholar 

  76. Navarro A, Alcock J R, and Whatmore R W, J Eur Ceram Soc 24 (2004) 1073. https://doi.org/10.1016/S0955-2219(03)00460-6

    Article  CAS  Google Scholar 

  77. Pietrzak E, Wiecinska P, Pawlikowska E, and Szafran M, J Therm Anal Calorim 130 (2017) 365. https://doi.org/10.1007/s10973-017-6401-6

    Article  CAS  Google Scholar 

  78. Cho J-M, and Dogan F, J Mater Sci 36 (2001) 2397.

    Article  CAS  Google Scholar 

  79. Tallon C, Chavara D, Gillen A, Riley D, Edwards L, Moricca S, and Franks G V, J Am Ceram Soc 96 (2013) 2374.

    Article  CAS  Google Scholar 

  80. Liu G, Yan C, and Jin H, Materials (2022). https://doi.org/10.3390/ma15082886

    Article  Google Scholar 

  81. Lewis J A, J Am Ceram Soc 83 (2000) 2341. https://doi.org/10.1111/j.1151-2916.2000.tb01560.x

    Article  CAS  Google Scholar 

  82. Sigmund W M, Bell N S, and Bergström L, J Am Ceram Soc 83 (2000) 1557. https://doi.org/10.1111/j.1151-29162000.tb01432.x

    Article  CAS  Google Scholar 

  83. Hench L L, J Am Ceram Soc 74 (1991) 1487. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x.107

    Article  CAS  Google Scholar 

  84. Pan J R, Huang C, Chen S, and Chung Y-C, Colloids Surf Physicochem Eng Asp 147 (1999) 359. https://doi.org/10.1016/S0927-7757(98)00588-3

    Article  CAS  Google Scholar 

  85. Saravanan L, Subramanian S, Kumar A B V, and Tharanathan R N, Ceram Int 32 (2006) 637. https://doi.org/10.1016/j.ceramint.2005.04.023

    Article  CAS  Google Scholar 

  86. Wiecinska P, Zurawska A, Falkowski P, Jeong D-Y, and Szafran M, J Korean Ceram Soc 57 (2020) 231. https://doi.org/10.1007/s43207-020-00036-x

    Article  CAS  Google Scholar 

  87. Mastalska-Popławska J, Sikora M, Izak P, and Góral Z, J Sol-Gel Sci Technol 96 (2020) 511. https://doi.org/10.1007/s10971-020-05404-x

    Article  CAS  Google Scholar 

  88. Trichês E D, Dellú M, Pandolfelli V C, and Ortega F D, Mater Sci Forum 591–593 (2008) 498. https://doi.org/10.4028/www.scientific.net/MSF.591-593.498

    Article  Google Scholar 

  89. Bednarek P, Szafran M, and Mizerski T, Adv Sci Technol 62 (2010) 169. https://doi.org/10.4028/www.scientific.net/AST.62.169

    Article  CAS  Google Scholar 

  90. Alipal J, Mohd Pu’ad N A S, Lee T C, Nayan N H M, Sahari N, Basri H, Idris M I, and Abdullah H Z, Mater Today Proc 42 (2021) 240. https://doi.org/10.1016/j.matpr.2020.12.922

    Article  CAS  Google Scholar 

  91. Pascual A R, and María E, Cellulose, Books on Demand (2019).

    Book  Google Scholar 

  92. Yu O, and Kim K H, Appl Sci 10 (2020) 4626. https://doi.org/10.3390/app10134626

    Article  CAS  Google Scholar 

  93. Gregorová E, Pabst W, and Bohačenko I, J Eur Ceram Soc 26 (2006) 1301. https://doi.org/10.1016/j.jeurceramsoc.2005.02.015

    Article  CAS  Google Scholar 

  94. Nikpour P, Salimi-Kenari H, Fahimipour F, Rabiee S M, Imani M, Dashtimoghadam E, and Tayebi L, Carbohydr Polym 190 (2018) 281. https://doi.org/10.1016/j.carbpol.2018.02.083

    Article  CAS  Google Scholar 

  95. Chaudhari V, Buttar H S, Bagwe-Parab S, Tuli H S, Vora A, and Kaur G, Front Nutr (2021). https://doi.org/10.3389/fnut.2021.646988

    Article  Google Scholar 

  96. Singh R S, Saini G K, and Kennedy J F, Carbohydr Polym 73 (2008) 515. https://doi.org/10.1016/j.carbpol.2008.01.003

    Article  CAS  Google Scholar 

  97. Sworn G, and Stouby L, in Handbook of Hydrocolloids (Third Edition), (eds) Phillips G O, and Williams P A, Woodhead Publishing Series in Food Science, Technology and Nutrition (2021), p 855. https://doi.org/10.1016/B978-0-12820104-6.00009-7

  98. Song E-H, Shang J, and Ratner D M, Polymer Science: A Comprehensive Reference, (eds) Matyjaszewski K, and Möller M, Elsevier (2012), p 137. https://doi.org/10.1016/B978-0-444-53349-4.00246-6

  99. Schmid J, Meyer V, and Sieber V, Appl Microbiol Biotechnol 91 (2011) 937. https://doi.org/10.1007/s00253-011-3438-5

    Article  CAS  Google Scholar 

  100. Shishkovsky I, Sherbakov V, Ibatullin I, Volchkov V, and Volova L, Compos Struct 202 (2018) 651. https://doi.org/10.1016/j.compstruct.2018.03.062

    Article  Google Scholar 

  101. Shishkovsky I, New Trends in 3D Printing, Books on Demand (2016).

    Book  Google Scholar 

  102. Mazzoli A, Med Biol Eng Comput 51 (2013) 245. https://doi.org/10.1007/s11517-012-1001-x

    Article  Google Scholar 

  103. Gibson I, Rosen D, Stucker B, and Khorasani M, Additive Manufacturing Technologies, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56127-7

    Book  Google Scholar 

  104. Chen Z, Sun X, Shang Y, Xiong K, Xu Z, Guo R, Cai S, and Zheng C, J Adv Ceram 10 (2021) 195. https://doi.org/10.1007/s40145-020-0444-z

    Article  CAS  Google Scholar 

  105. Sachs E, Cima M, Williams P, Brancazio D, and Cornie J, J Eng Ind 114 (1992) 481. https://doi.org/10.1115/1.2900701

    Article  Google Scholar 

  106. Man Y, Ding G, Xudong L, Xue K, Qu D, and Xie Z, J Asian Ceram Soc 9 (2021) 1377. https://doi.org/10.1080/21870764.2021.1981571

    Article  Google Scholar 

  107. Potdar A, Protasova L N, Thomassen L, and Kuhn S, React Chem Eng 2 (2017) 137. https://doi.org/10.1039/C6RE00185H

    Article  CAS  Google Scholar 

  108. Juhasz J A, and Best S M, J Mater Sci 47 (2012) 610. https://doi.org/10.1007/s10853-011-6063-x

    Article  CAS  Google Scholar 

  109. Fernandes H R, Gaddam A, Rebelo A, Brazete D, Stan G E, and Ferreira J M F, Materials (2018). https://doi.org/10.3390/ma11122530

    Article  Google Scholar 

  110. Zhao S, Liu B, Ding Y, Zhang J, Wen Q, Ekberg C, and Zhang S, J Clean Prod 271 (2020) 122674. https://doi.org/10.1016/j.jclepro.2020.122674

    Article  CAS  Google Scholar 

  111. Jones J R, in Tissue Engineering Using Ceramics and Polymers, (eds) Boccaccini A R, and Gough J E, Woodhead Publishing Series in Biomaterials, Woodhead Publishing (2007), p 52. https://doi.org/10.1533/9781845693817.1.52

  112. Pradip, Rai B, and Sathish P, KONA Powder Part J 22 (2004) 151. https://doi.org/10.14356/kona.2004018

    Article  CAS  Google Scholar 

  113. Gocmez H, Ceram Int 32 (2006) 521. https://doi.org/10.1016/j.ceramint.2005.04.005

    Article  CAS  Google Scholar 

  114. Zhang S, Li Z, Yao Y, Tian L, and Yan Y, Nano Energy 100 (2022) 107476. https://doi.org/10.1016/j.nanoen.2022.107476

    Article  CAS  Google Scholar 

  115. Rápó E, and Tonk S, Molecules (2021). https://doi.org/10.3390/molecules26175419

    Article  Google Scholar 

Download references

Acknowledgements

The authors are honoured to dedicate this contribution to Professor P C Kapur, a doyen in the field of mineral processing and process metallurgy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deenan Santhiya or S. Subramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, M., Santhiya, D. & Subramanian, S. Role of Surface-Chemistry in Colloidal Processing of Ceramics: A Review. Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-03104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03104-y

Keywords

Navigation