Skip to main content
Log in

Phase Evolution and Soft Magnetic Behavior of Mechanically Alloyed Fe–Co–Ni Medium Entropy Alloy at Different Disk Angular Velocity

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

FeCoNi medium entropy alloy was mechanically alloyed at two angular velocities, i.e., 500 and 300 rpm, utilizing a high-energy planetary ball mill. The energy transfer criteria, phase, and microstructural evolution during the milling mechanism were described and analyzed by kinematics, X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The results revealed that the total energy transferred during mechanical alloying was near ~ 4.635 times greater than FeCoNi-300 rpm. However, the structural analysis showed the γ-FCC phase in the case of FeCoNi-500 rpm and α-BCC + γ-FCC phases in case of FeCoNi-300 rpm. The magnetic properties were studied at 300 K and presented an excellent soft magnetic behavior with saturation magnetization of 124.86 emu/g and coercivity of 15.39 Oe in the case of FeCoNi-500 rpm. Furthermore, temperature-dependent magnetization measurements were also carried out and fitted with the modified Bloch model and Bloch and Curie–Weiss law-modified model. The results revealed that there is the existence of a significant ferromagnetic phase in the case of FeCoNi-300 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kustas A B, Susan D F, and Monson T, JOM 74 (2022) 1306–1328. https://doi.org/10.1007/S11837-021-05019-9/FIGURES/15

    Article  Google Scholar 

  2. Subramanian A T S, Meenalochini P, Sathiya S S B, and Prakash G R, Mater Today Proc 45 (2021) 1591. https://doi.org/10.1016/J.MATPR.2020.08.389

    Article  Google Scholar 

  3. The global soft magnetic materials market was valued at, (n.d.). https://www.globenewswire.com/news-release/2019/10/29/1937022/0/en/The-global-soft-magnetic-materials-market-was-valued-at-47-3-billion-in-2018-and-is-projected-to-reach-87-2-billion-by-2026-growing-at-a-CAGR-of-8-8-from-2019-to-2026.html (accessed October 31, 2021).

  4. Mohapatra J, Xing M, Elkins J, and Liu J P, J Alloys Compd 824 (2020) 153874. https://doi.org/10.1016/J.JALLCOM.2020.153874

    Article  CAS  Google Scholar 

  5. Betancourt-Cantera J A, Bolarín-Miró A M, Jesús FS-D, and Betancourt-Cantera L G, J Magn 25 (2020) 36. https://doi.org/10.4283/JMAG.2020.25.1.036

    Article  Google Scholar 

  6. Ramos R, Valdez B, Nedev N, Curiel M, Perez O, and Salvador J, Instrum Sci Technol 49 (2021) 499. https://doi.org/10.1080/10739149.2021.1888115

    Article  CAS  Google Scholar 

  7. Paganotti A, Bessa C V X, Ferreira L D R, Gama S, and Silva R A G, J Alloys Compd 811 (2019) 152029. https://doi.org/10.1016/J.JALLCOM.2019.152029

    Article  CAS  Google Scholar 

  8. Li H, Wang A, Liu T, Chen P, He A, Li Q, Luan J, and Liu C T, Mater Today 42 (2021) 49. https://doi.org/10.1016/J.MATTOD.2020.09.030

    Article  Google Scholar 

  9. Harrington K M, Miller E C, Frye A, and Stoyanov P, Wear 477 (2021) 203827. https://doi.org/10.1016/J.WEAR.2021.203827

    Article  CAS  Google Scholar 

  10. Kalantari H, Zandrahimi M, Adeli M, and Ebrahimifar H, Intermetallics 150 (2022) 107694. https://doi.org/10.1016/J.INTERMET.2022.107694

    Article  CAS  Google Scholar 

  11. Karati A, Manna J, Mishra S, and Murty B S, High Entropy Alloys (2020). https://doi.org/10.1201/9780367374426-18

    Article  Google Scholar 

  12. Chaudhary V, Chaudhary R, Banerjee R, and Ramanujan R V, Mater Today (2021). https://doi.org/10.1016/J.MATTOD.2021.03.018

    Article  Google Scholar 

  13. Zhou Y, Zhou D, Jin X, Zhang L, Du X, and Li B, Sci Rep 8 (2018) 1. https://doi.org/10.1038/s41598-018-19449-0

    Article  CAS  Google Scholar 

  14. Yin F, Hu S, Xu R, Xiang S, Hua L, and Cheng G J, Mater Sci Eng A 823 (2021) 141631. https://doi.org/10.1016/J.MSEA.2021.141631

    Article  CAS  Google Scholar 

  15. Pikula T, Oleszak D, Pekała M, and Jartych E, J Magn Magn Mater 320 (2008) 413. https://doi.org/10.1016/j.jmmm.2007.06.020

    Article  CAS  Google Scholar 

  16. Pikula T, Nukleonika 58 (2013) 153.

    CAS  Google Scholar 

  17. Jayaraman T V, Rathi A, and Thotakura G V, Intermetallics 113 (2019) 106583. https://doi.org/10.1016/j.intermet.2019.106583

    Article  CAS  Google Scholar 

  18. Thotakura G V, Rathi A, and Jayaraman T V, Appl Phys A Mater Sci Process 125 (2019) 235. https://doi.org/10.1007/s00339-019-2535-7

    Article  CAS  Google Scholar 

  19. Jayaraman T V, Rathi A, and Thotakura G V, Intermetallics 119 (2020) 106715. https://doi.org/10.1016/j.intermet.2020.106715

    Article  CAS  Google Scholar 

  20. Daly R, Khitouni N, Escoda M L, Isern N L, Juan Jose S M, Greneche J M, and Khitouni M, Arab J Sci Eng 46 (2021) 5633. https://doi.org/10.1007/S13369-020-05166-2/FIGURES/10

    Article  CAS  Google Scholar 

  21. Betancourt-Cantera L G, Sánchez-De Jesús F, Bolarín-Miró A M, Gallegos-Melgar A, Mayen J, and Betancourt-Cantera J A, J Mater Res Technol 9 (2020) 14969. https://doi.org/10.1016/J.JMRT.2020.10.068

    Article  CAS  Google Scholar 

  22. Jayaraman T V, Thotakura G V, and Rathi A, J Magn Magn Mater 489 (2019) 165466. https://doi.org/10.1016/j.jmmm.2019.165466

    Article  CAS  Google Scholar 

  23. Rathi A, Meka V M, and Jayaraman T V, J Magn Magn Mater 469 (2019) 467. https://doi.org/10.1016/j.jmmm.2018.09.002

    Article  CAS  Google Scholar 

  24. Prasad N K, and Kumar V, J Mater Sci Mater Electron 26 (2015) 10109. https://doi.org/10.1007/s10854-015-3695-7

    Article  CAS  Google Scholar 

  25. Burgio N, Iasonna A, Magini M, Martelli S, and Padella F, Il Nuovo Cimento D 13 (1991) 459. https://doi.org/10.1007/BF02452130

    Article  Google Scholar 

  26. Abdellaoui M, and Gaffet E, Acta Metallurgica et Materialia 43 (1995) 1087. https://doi.org/10.1016/0956-7151(95)92625-7

    Article  CAS  Google Scholar 

  27. Meng Q, Guo S, Zhao X, and Veintemillas-Verdaguer S, J Alloys Compd 580 (2013) 187–190. https://doi.org/10.1016/J.JALLCOM.2013.05.115

    Article  CAS  Google Scholar 

  28. Shewmon P, Diffusion in Solids, 2nd edn. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-48206-4

    Book  Google Scholar 

  29. Chen Y L, Hu Y H, Hsieh C A, Yeh J W, and Chen S K, J Alloys Comps 481 (2009) 768. https://doi.org/10.1016/j.jallcom.2009.03.087

    Article  CAS  Google Scholar 

  30. Zarezadeh Mehrizi M, and Beygi R, J Adv Mater Process (J Mater Sci) (2017). www.SID.ir (accessed May 24, 2021).

  31. Sahu P, Samal S, and Kumar V, Materialia 18 (2021) 101133. https://doi.org/10.1016/j.mtla.2021.101133

    Article  CAS  Google Scholar 

  32. Murty B S, Mohan Rao M, and Ranganathan S, Acta Metallurgica et Materialia 43 (1995) 2443. https://doi.org/10.1016/0956-7151(94)00402-1

    Article  CAS  Google Scholar 

  33. Joardar J, Pabi S K, and Murty B S, J Alloys Compd 429 (2007) 204. https://doi.org/10.1016/j.jallcom.2006.04.045

    Article  CAS  Google Scholar 

  34. Bhatt J, and Murty B S, J Alloys Compd 459 (2008) 135. https://doi.org/10.1016/j.jallcom.2007.04.242

    Article  CAS  Google Scholar 

  35. Salemi F, Abbasi M H, and Karimzadeh F, J Alloys Compd 685 (2016) 278. https://doi.org/10.1016/j.jallcom.2016.05.274

    Article  CAS  Google Scholar 

  36. Dastanpoor E, and Enayati M H, Indian J Eng Mater Sci (IJEMS) 22 (2015) 521. http://hdl.handle.net/123456789/33434

  37. Nelson J B, and Riley D P, Proc Phys Soc 57 (1945) 160. https://doi.org/10.1088/0959-5309/57/3/302

    Article  CAS  Google Scholar 

  38. Williamson G K, and Hall W H, Acta Metallurgica. 1 (1953) 22. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  39. Suryanarayana C, Al-Joubori A A, and Wang Z, Met Mater Int (2021). https://doi.org/10.1007/S12540-021-00998-5

    Article  Google Scholar 

  40. Aghamiri S M S, Oono N, Ukai S, Kasada R, Noto H, Hishinuma Y, and Muroga T, Nucl Mater Energy 15 (2018) 17. https://doi.org/10.1016/j.nme.2018.05.019

    Article  Google Scholar 

  41. Kulkarni R, Murty B S, and Srinivas V, J Alloys Compd 746 (2018) 194. https://doi.org/10.1016/J.JALLCOM.2018.02.275

    Article  CAS  Google Scholar 

  42. Mishra R K, Kumari P, Gupta A K, and Shahi R R, J Alloys Compd 889 (2021) 161773. https://doi.org/10.1016/J.JALLCOM.2021.161773

    Article  Google Scholar 

  43. Kang T, Wu S, Wang M, Wang J, Fan X, and Lu Y, Appl Phys A 127 (2021) 1. https://doi.org/10.1007/S00339-021-04988-7

    Article  Google Scholar 

  44. Mishra R K, Shahi R R, Singh A R, and Sahay P P, Emergent Mater 3 (2020) 655. https://doi.org/10.1007/s42247-020-00110-4

    Article  CAS  Google Scholar 

  45. Li P, Wang A, and Liu C T, Intermetallics 87 (2017) 21. https://doi.org/10.1016/j.intermet.2017.04.007

    Article  CAS  Google Scholar 

  46. Herzer G, IEEE Trans Magn 26 (1990) 1397. https://doi.org/10.1109/20.104389

    Article  CAS  Google Scholar 

  47. Sahu P, Bagri A S, Anoop M D, Kumar M, and Kumar V, Silicon 12 (2020) 893. https://doi.org/10.1007/s12633-019-00182-w

    Article  CAS  Google Scholar 

  48. Alijani F, Reihanian M, and Gheisari K, J Alloys Compd 773 (2019) 623–630. https://doi.org/10.1016/j.jallcom.2018.09.204

    Article  CAS  Google Scholar 

  49. Chaudhary V, Chaudhary R, Banerjee R, and Ramanujan R V, Mater Today. 49 (2021) 231–252. https://doi.org/10.1016/J.MATTOD.2021.03.018

    Article  CAS  Google Scholar 

  50. Li Z, Gu Y, Pan M, Wang C, Wu Z, Hou X, Tan X, and Xu H, J Alloys Compd 792 (2019) 215. https://doi.org/10.1016/j.jallcom.2019.03.411

    Article  CAS  Google Scholar 

  51. Chaudhary V, Tan L P, Sharma V K, and Ramanujan R V, J Alloys Compd 869 (2021) 159318. https://doi.org/10.1016/j.jallcom.2021.159318

    Article  CAS  Google Scholar 

  52. Prasad N K, and Kumar V, J Mater Sci Mater Electron 27 (2016) 10136. https://doi.org/10.1007/s10854-016-5090-4

    Article  CAS  Google Scholar 

  53. Yakın A, Şimşek T, Avar B, Chattopadhyay A K, Özcan S, and Şimşek T, Appl Phys A 128 (2022) 1. https://doi.org/10.1007/S00339-022-05836-Y

    Article  Google Scholar 

  54. Ghasemi A, Zamani K, Tavoosi M, and Gordani G R, J Supercond Novel Magn 33 (2020) 3189–3196. https://doi.org/10.1007/s10948-020-05579-y

    Article  CAS  Google Scholar 

  55. Zhao R F, Ren B, Zhang G P, Liu Z X, and Zhang J, J Magn Magn Mater 468 (2018) 14. https://doi.org/10.1016/j.jmmm.2018.07.072

    Article  CAS  Google Scholar 

  56. Mishra R K, and Shahi R, J Alloys Compd 821 (2020) 153534. https://doi.org/10.1016/j.jallcom.2019.153534

    Article  CAS  Google Scholar 

  57. Duan Y, Wen X, Zhang B, Ma G, and Wang T, J Magn Magn Mater 497 (2020) 165947. https://doi.org/10.1016/j.jmmm.2019.165947

    Article  CAS  Google Scholar 

  58. Liu X, Duan Y, Yang X, Huang L, Gao M, and Wang T, J Alloys Compd 872 (2021) 159602. https://doi.org/10.1016/J.JALLCOM.2021.159602

    Article  CAS  Google Scholar 

  59. Yingzhe Z, Yudao C, Qingdong Q, and Wei L, J Magn Magn Mater 498 (2020) 166151. https://doi.org/10.1016/J.JMMM.2019.166151

    Article  Google Scholar 

  60. Sahu P, Solanki S, Dewangan S, and Kumar V, J Mater Res 34 (2019) 829. https://doi.org/10.1557/jmr.2019.34

    Article  CAS  Google Scholar 

  61. Khitouni N, Hammami B, Llorca-Isern N, Ben Mbarek W, Suñol J J, and Khitouni M, Materials 15 (2022) 6483. https://doi.org/10.3390/MA15186483

    Article  CAS  Google Scholar 

  62. Yaykasli H, Avar B, Panigrahi M, Gogebakan M, and Eskalen H, Arab J Sci Eng (2022). https://doi.org/10.1007/S13369-022-07037-4/FIGURES/5

    Article  Google Scholar 

  63. Aquino R, Depeyrot J, Sousa M H, Tourinho F A, Dubois E, and Perzynski R, Phys Rev B Condens Matter Mater Phys 72 (2005) 184435. https://doi.org/10.1103/PHYSREVB.72.184435/FIGURES/7/MEDIUM

    Article  Google Scholar 

  64. Sharma V K, Najim M, Srivastava A K, and Varma G D, J Magn Magn Mater 324 (2012) 683. https://doi.org/10.1016/J.JMMM.2011.08.061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

VK and PS would like to acknowledge the Institute Instrumentation Center (IIC), Roorkee, for the VSM facility. PS would like to thank the Indian government's Ministry of Human Resource Development (MHRD) for awarding a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P., Samal, S. & Kumar, V. Phase Evolution and Soft Magnetic Behavior of Mechanically Alloyed Fe–Co–Ni Medium Entropy Alloy at Different Disk Angular Velocity. Trans Indian Inst Met 76, 3065–3078 (2023). https://doi.org/10.1007/s12666-023-03035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03035-8

Keywords

Navigation