Skip to main content
Log in

Investigating on Structural, Microstructural and Magnetic Properties of Nanocrystalline Fe60Al35Mg5 Alloy Synthesised by High-Energy Ball Milling

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The mechanical alloying process has been used to synthesise the nanocrystalline Fe60Al35Mg5 (wt%) powders in a high-energy planetary ball-mill Retsch PM 400. The evolution structural, microstructural and magnetic properties of ball-milled powders at different milling times (t variation from 0 to 32 h) were investigated by X-ray diffraction using the MAUD program which is based on the Rietveld method and the vibrating sample magnetometer. The XRD results reveal the formation of a bcc-Fe (Al, Mg) solid solution after 8 h of milling possessing a lattice parameter of 0.2895 nm after 32 h of milling. It is also observed a refinement of the grain size, which reaches 18.75 nm, and an increase in the microstrain after 32 h of milling. Magnetic measurements of the milled Fe60Al35Mg5 (wt%) powder mixture exhibit a soft ferromagnetic character where the magnetic parameters are found to be very sensitive to the milling time mainly due to the particle size refinement as well as the formation of the solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wederni A, Lachheb R, Suñol J J, Saurina J, Escoda L, and Khitouni M, Mater Charact 148 (2019) 272. https://doi.org/10.1016/j.matchar.2019.01.001

    Article  CAS  Google Scholar 

  2. Zaharov Y A, Pugachev V M, Ovcharenko V I, Datiy K A, Popova A M, and Bogomyakov A S, Phys Status Solidi B 225 (2017) 1700175. https://doi.org/10.1002/pssb.201700175

    Article  CAS  Google Scholar 

  3. Shokrollahi H, Mater Des 30 (2009) 3374. https://doi.org/10.1016/j.matdes.2009.03.035

    Article  CAS  Google Scholar 

  4. Behvandi A, Shokrollahi H, Chitsazan B, and Ghaffari M, J Magn Magn Mater 322 (2010) 3932. https://doi.org/10.1016/j.jmmm.2010.08.025

    Article  CAS  Google Scholar 

  5. Meka V M, Chirantana K, and Jayaraman T V, Powder Technol 332 (2018) 33. https://doi.org/10.1016/j.powtec.2018.03.038

    Article  CAS  Google Scholar 

  6. Chen C W, J Appl Phys 32 (1961) 348S. https://doi.org/10.1063/1.2000465

    Article  Google Scholar 

  7. Moumeni H, Alleg S, and Greneche J M, J Alloys Compd 386 (2005) 12. https://doi.org/10.1016/j.jallcom.2004.05.017

    Article  CAS  Google Scholar 

  8. Ammouchi N, Otmani A, Bensebaa Z, Azzaza S, Bououdina M, Djekoun A, Bechiri L, and Greneche J M, J Supercond Nov Magn 28 (2015) 3651. https://doi.org/10.1007/s10948-015-3203-6

    Article  CAS  Google Scholar 

  9. Bhoi B, Srinivas V, and Vidyadhar Singh J, Alloy Compd (2010). https://doi.org/10.1016/j.jallcom.2010.01.155

    Article  Google Scholar 

  10. Avar B, and Ozcan S, J Alloy Compd (2015). https://doi.org/10.1016/j.jallcom.2015.07.268

    Article  Google Scholar 

  11. Znaidi L, Mater Sci Eng B 174 (2010) 18. https://doi.org/10.1016/j.mseb.2010.07.001

    Article  CAS  Google Scholar 

  12. Wu Q, Wongwiriyapan W, Park J H, Park S, Jung S J, Jeong T, Lee S, Lee Y H, and Song Y J, Curr Appl Phys 16 (2016) 1175. https://doi.org/10.1016/j.cap.2016.04.024

    Article  Google Scholar 

  13. Hasnaouia N, Hafs A, Hafs T, and Bendjedaa F, J Alloys Compd 899 (2022) 163338. https://doi.org/10.1016/j.jallcom.2021.163338

    Article  CAS  Google Scholar 

  14. Baker I, and Gaydosh D, Mater Sci Eng A 96 (1987) 147. https://doi.org/10.1016/0025-5416(87)90549-0

    Article  CAS  Google Scholar 

  15. Zerniz N, Azzaza S, Chater R, Abbas H, Bououdina M and Bouchelaghem W, 100 (2015) 21. http://dx.doi.org/https://doi.org/10.1016/j.matchar.2014.12.010

  16. Krifa M, Mhadhbi M, Escoda L, Güell J M, Suñol J J, Llorca-Isern N, Artieda-Guzmán C, and Khitouni M, J Alloy Compd 554 (2013) 51. https://doi.org/10.1016/j.jallcom.2012.11.131

    Article  CAS  Google Scholar 

  17. Ibn Gharsallah H, Azabou M, Escoda L, Sunol J J, Lopez I, Llorca-Isern N, and Khitouni M, J. Alloy. Compd 729 (2017) 776e786. https://doi.org/10.1016/j.jallcom.2017.09.229

    Article  CAS  Google Scholar 

  18. Lutterotti L, Laboratorio Scienza e Tecnologia dei Materiali, Universita di Torino, Corso (2000).

    Google Scholar 

  19. Young R A, and Wiles D B, J Appl Cryst 15 (1982) 430. https://doi.org/10.1107/S002188988201231X

    Article  CAS  Google Scholar 

  20. Suryanarayana C, Prog Mater Sci 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  21. Castex L, Lebrun J L, Maeder G, and Sprauel J M, Publs Scient Tech ENSAM 22 (1981) 51.

    Google Scholar 

  22. Chater R, Bououdina M, Chaanbi D, and Abbas H, J Solid State Chem 201 (2013) 317. https://doi.org/10.1016/j.jssc.2013.02.028

    Article  CAS  Google Scholar 

  23. Boukherroub N, Guittoum A, Souami N, Akkouche K, and Boutarfaia S, EPJ Web Conf. 29 (2012) 00010. https://doi.org/10.1051/epjconf/20122900010

    Article  CAS  Google Scholar 

  24. Hamlati Z, Guittoum A, Bergheul S, Souami N, Taibi K, and Azzaz M, J Mater Eng Perform 21 (2012) 1943. https://doi.org/10.1007/s11665-011-0095-x

    Article  CAS  Google Scholar 

  25. Rajath Hegde M M, and Surendranathan A O, Powder Metall Met Ceram 48 (2009) 641. https://doi.org/10.1007/s11106-010-9181-0

    Article  CAS  Google Scholar 

  26. Wederni A, Lachheb R, Suñolb J J, Saurina J, Escoda L, and Khitouni M, Mater Charact 148 (2019) 272. https://doi.org/10.1016/j.matchar.2019.01.001

    Article  CAS  Google Scholar 

  27. Pękała M, Pękała K, Szydłowsk J, and Drozd V, J Magn Magn Mater 475 (2019) 189. https://doi.org/10.1016/j.jmmm.2018.11.069

    Article  CAS  Google Scholar 

  28. Raanaei H, Eskandari H, and Mohammad-Hosseini V, J Magn Magn Mater 398 (2016) 190. https://doi.org/10.1016/j.jmmm.2015.09.031

    Article  CAS  Google Scholar 

  29. Prasad N K, and Kumar V, J Mater Sci Mater Electron 26 (2015) 10109. https://doi.org/10.1007/s10854-015-3695-7

    Article  CAS  Google Scholar 

  30. Hamzaoui R, and Elkedim O, J Alloys Compd 573 (2013) 157. https://doi.org/10.1016/j.jallcom.2013.03.183

    Article  CAS  Google Scholar 

  31. Kuhrt C, and Schultz L, J Appl Phys 73 (1993) 6588. https://doi.org/10.1063/1.352573

    Article  CAS  Google Scholar 

  32. Hamzaoui R, Elkedim O, Gaffet E, and Greneche J M, J Alloys Compd 417 (2006) 32. https://doi.org/10.1016/j.jallcom.2005.09.064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Algerian Directorate for Scientific Research and Technological Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hafs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafs, A., Hafs, T., Berdjane, D. et al. Investigating on Structural, Microstructural and Magnetic Properties of Nanocrystalline Fe60Al35Mg5 Alloy Synthesised by High-Energy Ball Milling. Trans Indian Inst Met 76, 3447–3454 (2023). https://doi.org/10.1007/s12666-023-03029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03029-6

Keywords

Navigation