Skip to main content

Advertisement

Log in

Indentation-Derived Creep Response of Age-Hardened AlSi10Mg Fabricated Through Powder Bed Fusion Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This work mainly focuses on investigating the microstructural and indentation creep behaviour of heat-treated AlSi10Mg alloy processed via the laser-assisted powder bed fusion (PBF) route. The as-built AlSi10Mg samples were initially solutionized at 520 °C for 2 h. Then, the solutionized samples were aged at 180 °C for 2 h. Indentation creep tests were conducted on the aged sample at three different loads 55, 92 and 129 MPa at 100 °C for 2 h. The steady-state creep rate was calculated from the slope of time vs indentation depth graph. In order to supplement the indentation creep results, detailed microstructural analysis has been carried out through optical and scanning electron microscopy. XRD study was carried out for phase analysis. AlSi10Mg in the as-built condition revealed the eutectic mixture at the melt pool boundaries and ultrafine Al cells in the interior. XRD pattern confirmed the presence of Mg2Si in the age-hardened condition. Several defects were seen in the age-hardened condition. As-built alloy showed the highest hardness, whereas age hardening reduced the hardness due to the spheroidization of Si particles. The primary creep region showed an increase in indentation depth increased with respect to time. The depth of indentation remained constant in the secondary creep region. Age-hardened samples subjected to 92 MPa stress showed better creep resistance compared to 55 and 129 MPa. As-built condition showed the highest hardness due to the extremely fine microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Louvis Eleftherios, Fox Peter & Sutcliffe Christopher J. Journal of Mater. Process. Tech. 211 (2011) 275-284. https://doi.org/10.1016/j.jmatprotec.2010.09.019

    Article  CAS  Google Scholar 

  2. Ayush Sinha, Biswajit Swain, Asit Behera, Priyabrata Mallick, Saswat Kumar Samal, Vishwanatha H M & Ajit Behera, J. Manuf. Mater. Process. 6(1), (2022) 1-34. https://doi.org/10.3390/jmmp6010016.

    Article  CAS  Google Scholar 

  3. Krystian Zyguła, Bartłomiej Nosek, Hubert Pasiowiec & Norbert Szysiak, World Scientific News, 104 (2018) 456-466, EISSN 2392–2192.

    Google Scholar 

  4. Gupta A K, Lloyd D J & Court S A, Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater. Sci. and Engg. A 316 (2001) 11-17. https://doi.org/10.1016/S0921-5093(01)01247-3

    Article  Google Scholar 

  5. Sai Deepak Kumar A, Fayaz Anwar Mohammad, Vara Prasad E, Bharath Sreevatsava P & Vanitha C, Mater. Today: Proc. 93 (2021) 1292-1302, https://doi.org/10.1016/j.matpr.2020.04.366

    Article  CAS  Google Scholar 

  6. James Anthony LaManna Jr., Doctoral thesis on “A Study of the Relationship between Indentation Creep and Uniaxial Creep”, University of Tennessee, Knoxville.(Knoxville, USA) 2006, 163 , https://trace.tennessee.edu/utk_graddiss/1973, accessed 14th January 2023

  7. Yan Wuzhu, Wen Shifeng, Liu Jun & Yue Zhufeng, . Mater. Sci. and Engg. A 527(2010) 1850-1855. https://doi.org/10.1016/j.msea.2009.11.035.

    Article  CAS  Google Scholar 

  8. Bharath Sreevatsava P, and Vara Prasad E, Sai Deepak Kumar A, Mohammad Fayaz Anwar, Vadapally Rama Rao & Vanitha C, Metall. Mater. Eng. 27(4), (2021) 531-539. https://doi.org/10.30544/745.

    Article  Google Scholar 

  9. Yu H Y, Imam M A, & Rath B B, , An impression test method for characterisation of the flow behaviour of superplastic material, Mater. Sci. and Engg. 79(2), (1986) 125-132. https://doi.org/10.1016/0025-5416(86)90395-2.

  10. Ferrar B, Mullen L, Jones E, Stamp R & Sutcliffe C J, J. of Mater. Process. Tech. 212 (2012) 355-364. https://doi.org/10.1016/j.jmatprotec.2011.09.020

    Article  Google Scholar 

  11. Read N, Wang W, Essa K & Attallah MM, Mater. & Des. 65, (2015) 417–424. https://doi.org/10.1016/j.matdes.2014.09.044.

    Article  CAS  Google Scholar 

  12. Hammond Vincent, Schuch Michael & Bleckmann Matthias, The influence of a process interruption on tensile properties of AlSi10Mg samples produced by selective laser melting. Rapid Proto. J. 25(8), (2019) 1442–1452. https://doi.org/10.1108/RPJ-04-2018-0105

    Article  Google Scholar 

  13. Naor Elad Uzana, Roni Shnecka, Ori Yeheskelb & Nachum Frage, Addit. Manuf. 24 (2018) 257-263. https://doi.org/10.1016/j.addma.2018.09.033

    Article  CAS  Google Scholar 

  14. Tae-Hyun Park, Min-Seok Baek, Holden Hyer, Yongho Sohn & Kee-Ahn Lee, Mater. Charac. 176 (2021) 111113,1-10. https://doi.org/10.1016/j.matchar.2021.111113.

    Article  CAS  Google Scholar 

  15. Dongming Li, Ruixian Qin, Jianxin Xu, Bingzhi Chen & Xu Niu, Mater. Charac. 187 (2022) 111882,1-13. https://doi.org/10.1016/j.matchar.2022.111882.

    Article  CAS  Google Scholar 

  16. Vadapally Rama Rao, Deepak K. Pattanayak & Vanitha C, Trans. of the Indian Inst. of Met. 76 (2022) 271–277. https://doi.org/10.1007/s12666-022-02663-w.

    Article  CAS  Google Scholar 

  17. Shakil S.I, Hadadzadeh A, Pirgazi H & Mohammadi M, Haghshenas M, Micron, 150 (2021) 103145,1-12. https://doi.org/10.1016/j.micron.2021.103145.

    Article  CAS  Google Scholar 

  18. Sastry D H, Mater. Sci. and Engg. A 409, (2005) 67-75. https://doi.org/10.1016/j.msea.2005.05.110

    Article  CAS  Google Scholar 

  19. Zhuang F K, Tu S T, Zhou G Y &Wang Q Q, The J. of Strain Analy. for Engg. Des. 49, (2014) 482-491. https://doi.org/10.1177/0309324714537056

    Article  Google Scholar 

  20. Suryanarayana C, Grant Norton M, “X-Ray Diffraction: A Practical Approach”, Springer New York, 1998, 207-221, ISBN: 97801489901484 https://doi.org/10.1007/978-1-4899-0148-4.

  21. Bera S, Chowdhury S G, Estrin Y & Manna I, J. Alloys Compd. 548 (2013) 257-265. https://doi.org/10.3390/ma14020430.

    Article  CAS  Google Scholar 

  22. Cahoon J R, Broughton W H & Kutzak A R, Metall. Trans. 2, (1971) 1979. https://doi.org/10.1007/BF02913433

    Article  CAS  Google Scholar 

  23. Fiocchi J, Tuissi A, Bassani P & Biffi C A, J. Alloys Compd. 695 (2017) 3402-3409. https://doi.org/10.1016/j.jallcom.2016.12.01.

    Article  CAS  Google Scholar 

  24. Xianglong Yu & Wang Lianfeng, Proced. Manuf. 15 (2018) 1701-1707. https://doi.org/10.1016/j.promfg.2018.07.265.

    Google Scholar 

  25. Nesma T. Aboulkhair, IanMaskery, ChrisTuck, IanAshcroft & Nicola M.Everitt, Mater. Sci. & Engg. A 667 (2016) 139-146. https://doi.org/10.1016/j.msea.2016.04.092.

  26. Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C & Shi Y, Mater. Sci. Eng. A 663 (2016) 116-125. https://doi.org/10.1007/s42452-019-0270-5

    Article  CAS  Google Scholar 

  27. Alghamdi F & Haghshena M, SN Appl. Sci. 1 (2019) 255-265. https://doi.org/10.1007/s42452-019-0270-5

    Article  CAS  Google Scholar 

  28. Chen M & Goodman D W, Chem. Soc. Rev. 37 (9), (2008) 1860-1870. https://doi.org/10.1016/j.jcat.2013.11.020.

    Article  CAS  Google Scholar 

  29. Iturrioz A, Gil E, Petite M M, Garciandia F, Mancisidor A M & San Sebastian M, Weld. World 62 (4), (2018) 885-892. https://doi.org/10.1007/s40194-018-0592-8

    Article  CAS  Google Scholar 

  30. Michael Schuch, Tom Hahn & Matthias Beckman, Mater. Sci. & Engg. A, 813 (2021) 141134,273-286. https://doi.org/10.1016/j.msea.2021.141134.

  31. Alghamdi F, Song X, Hadadzadeh A, Shalchi-Amirkhiz B, Mohammadi M & Haghshenas M, Mate. Sci. & Engg. A, 783 (2020) 139296,1-12. https://doi.org/10.1016/j.msea.2020.139296.

  32. Takata N, Kodaira H, Sekizawa K, Suzuki A & Kobashi M, Mater. Sci. and Engg.A 704 (2017) 218–228. https://doi.org/10.1016/j.msea.2017.08.029

    Article  CAS  Google Scholar 

  33. Aboulkhair N T, Tuck C, Ashcroft I, Maskery I & Everitt N M, Metall. and Mater. Trans. A 46 (2015) 3337–3341. https://doi.org/10.1007/s11661-015-2980-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank National Institute of Technology Warangal and CSIR-CECRI, Karaikudi for providing the experimental facility. CSIR-CECRI manuscript communication number CECRI/PESVC/Pubs/2022-150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vanitha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanitha, C., Rao, V.R., Sashank, C. et al. Indentation-Derived Creep Response of Age-Hardened AlSi10Mg Fabricated Through Powder Bed Fusion Process. Trans Indian Inst Met 76, 3437–3445 (2023). https://doi.org/10.1007/s12666-023-03020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03020-1

Keywords

Navigation