Skip to main content
Log in

Assessment of Sulfide Corrosion and Wear Behavior of HVOF-Sprayed Cr3C2–25NiCr Coating on 304 Stainless Steels in H2S Environment

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

To prevent corrosion or abrasion damage of equipment used in hydrogen sulfide (H2S) and sand conditions, high wear and corrosion-resistant coatings are needed. In this study, a cemented carbide Cr3C2–25NiCr coating was applied to 304 stainless steel substrate via high-velocity oxygen fuel thermal spraying to investigate its wear and corrosion resistance in an oil and gas field model environment. The coating exhibits high hardness (1062.4HV0.1) that is five times greater than the substrate and a 50% reduction in wear pit depth. The corrosion rate of the coating is 72% less than that of stainless steel (0.17 mm/y). These results suggest that Cr3C2–25NiCr coating has great potential for use in the oil and gas industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang F, Cheng P, Zhao X Y, Liu J, Hu Q, and Cheng Y F, Int J Hydrog Energy 42 (2017) 4561. https://doi.org/10.1016/j.ijhydene.2016.10.130

    Article  CAS  Google Scholar 

  2. Gan L, Huang F, Zhao X, Liu J, and Cheng Y F, Int J Hydrog Energy 43 (2018) 2293. https://doi.org/10.1016/j.ijhydene.2017.11.155

    Article  CAS  Google Scholar 

  3. Fenker M, Balzer M, and Kappl H, Surf Coat Technol 257 (2014) 182. https://doi.org/10.1016/j.surfcoat.2014.08.069

    Article  CAS  Google Scholar 

  4. Aranke O, Algenaid W, Awe S, and Joshi S, Coatings 9 (2019) 552. https://doi.org/10.3390/coatings9090552

    Article  CAS  Google Scholar 

  5. Bolleddu V, Racherla V, and Bandyopadhyay P P, Int J Adv Manuf Technol (2015). https://doi.org/10.1007/s00170-015-7824-5

    Article  Google Scholar 

  6. Xie M, Zhang S, and Li M, ApSS 273 (2013) 799. https://doi.org/10.1016/j.apsusc.2013.03.010

    Article  CAS  Google Scholar 

  7. Toller L, Liu C, Holmström E, Larsson T, and Norgren S, Int J Refract Met Hard Mater 62 (2017) 225. https://doi.org/10.1016/j.ijrmhm.2016.07.005

    Article  CAS  Google Scholar 

  8. Sun C, Wang Y, Sun J, Lin X, Li X, Liu H, et al., J Supercrit Fluids 116 (2016) 70. https://doi.org/10.1016/j.supflu.2016.05.006

    Article  CAS  Google Scholar 

  9. Venkatesh L, Pitchuka S B, Sivakumar G, Gundakaram R C, Joshi S V, and Samajdar I, Wear 386–387 (2017) 72. https://doi.org/10.1016/j.wear.2017.06.002

    Article  CAS  Google Scholar 

  10. Kamal S, Jayaganthan R, and Prakash S, J Alloys Compd 472 (2009) 378. https://doi.org/10.1016/j.jallcom.2008.04.087

    Article  CAS  Google Scholar 

  11. Li L, Wang J, Yan J, Duan L, Li X, and Dong H, Metall Mater Trans A 49 (2018) 6521. https://doi.org/10.1007/s11661-018-4920-9

    Article  CAS  Google Scholar 

  12. Sun J, Sun C, Zhang G, Li X, Zhao W, Jiang T, et al., Corros Sci 107 (2016) 31. https://doi.org/10.1016/j.corsci.2016.02.017

    Article  CAS  Google Scholar 

  13. Sun C, Zeng H B, and Luo J L, Corros Sci 148 (2019) 317. https://doi.org/10.1016/j.corsci.2018.12.022

    Article  CAS  Google Scholar 

  14. Li L, Wang J, Xiao J, Yan J, Fan H, Sun L, et al., Int J Hydrog Energy 46 (2021) 11849. https://doi.org/10.1016/j.ijhydene.2021.01.053

    Article  CAS  Google Scholar 

  15. Abdar P S, Hariri M B, Kahyarian A, and Nesic S, Electrochim Acta 382 (2021) 138231. https://doi.org/10.1016/j.electacta.2021.138231

    Article  CAS  Google Scholar 

  16. Li J, Sun C, Roostaei M, Mahmoudi M, Fattahpour V, Zeng H, et al., Corrosion 76 (2020) 578. https://doi.org/10.5006/3371

    Article  CAS  Google Scholar 

  17. Shi F, Zhang L, Yang J, Lu M, Ding J, and Li H, Corros Sci 102 (2016) 103. https://doi.org/10.1016/j.corsci.2015.09.024

    Article  CAS  Google Scholar 

  18. Zhang W, Young D, Brown B, Shafer C, Lu F, Anyanwu E, et al., Corros Sci 188 (2021) 109516. https://doi.org/10.1016/j.corsci.2021.109516

    Article  CAS  Google Scholar 

  19. Li L, Yan J, Xiao J, Sun L, Fan H, and Wang J, Corros Sci 187 (2021) 109472. https://doi.org/10.1016/j.corsci.2021.109472

    Article  CAS  Google Scholar 

  20. Zhao X H, Han Y, Bai Z Q, and Wei B, Electrochim Acta 56 (2011) 7725. https://doi.org/10.1016/j.electacta.2011.05.116

    Article  CAS  Google Scholar 

  21. Zhang G A, Zeng Y, Guo X P, Jiang F, Shi D Y, and Chen Z Y, Corros Sci 65 (2012) 37. https://doi.org/10.1016/j.corsci.2012.08.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Grants provided by the National Natural Science Foundation of China (Nos. 51471112 and 51611130204), Science and Technology Planning Project of Sichuan (Nos. 2019YFG0261, 2020YFG0095 and 2023YFG0248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Conflict of Interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1314 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Wang, J., Yan, J. et al. Assessment of Sulfide Corrosion and Wear Behavior of HVOF-Sprayed Cr3C2–25NiCr Coating on 304 Stainless Steels in H2S Environment. Trans Indian Inst Met 76, 3219–3228 (2023). https://doi.org/10.1007/s12666-023-02986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02986-2

Keywords

Navigation