Skip to main content

Advertisement

Log in

Effect of Cooling Conditions on the Solidification Microstructure and Mechanical Properties of Al–18Si Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, the effects of cooling conditions on the solidification microstructure and mechanical properties of Al–18Si alloy were studied. Results show that the cooling rate up to about 250 K/s could be obtained with an ultra-low temperature copper tube in the process of melt rapid cooling + mold cooling, which could completely inhibit the precipitation of primary silicon and promote the formation of pseudo-eutectic structure in Al–18Si alloy. While in the existing research, the cooling rate was in the range of 150–200 K/s, which could only refine the primary silicon in the solidification microstructure of hypereutectic Al–Si alloys. With the change of cooling conditions, eutectic silicon changes from needle sheet with large lamellar spacing to fine sheet and then, too dense rod-like structure. The α-Al phase is transformed into a fine dendrite. The impact toughness, tensile strength, and elongation of melt rapid cooling + mold cooling Al–18Si alloy are 29.2 J/cm2, 241 MPa, and 6.4%, respectively. Melt rapid cooling + mold cooling is an effective method to inhibit the precipitation of primary silicon in hypereutectic Al–Si alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander C, Marukovich E, and Martin S, Metals 10 (2020) 819.

    Article  Google Scholar 

  • An Y K, Liang L, Xu X L, Zhao Y H, and Hou H, J Mater Res Technol 11 (2021) 548.

    Article  CAS  Google Scholar 

  • Ao X H, Xia H X, Liu J H, He Q Y, and Lin S X, Comp Mater Sci 186 (2021) 110049

    Article  CAS  Google Scholar 

  • Cai Z Y, Zhang C, Wang R C, Peng C Q, Qiu K, and Wang N G, Prog Nat Sci 26 (2016) 391.

    Article  CAS  Google Scholar 

  • Chaiyawat P, Phromphong P, Ussadawut P, Limmaneevichitr C, J Rare Earth (2021).

  • Gu T, Pan Y, Lu T, Li C L, and Pi J H, Mater Charact 141 (2018) 115.

    Article  CAS  Google Scholar 

  • Haghayeghia R, and Timelli G, Mater Lett 283 (2021) 128779

    Article  Google Scholar 

  • Kumar D T A, Kumar K G B, Pattanaik A, and Mukherjee M, Trans Indian Inst Met 73 (2020) 3105.

    Article  CAS  Google Scholar 

  • Li P J, Nikitin V I, Kandalova E G, Nikitin K V. Mater Sci Eng A 332 (2002) 371.

    Article  Google Scholar 

  • Li Q L, Xia T D, Lan Y F, Zhao W J, Fan L, and Li P F, J Alloy Compd 562 (2013) 25.

    Article  CAS  Google Scholar 

  • Liang C, Chen Z H, Huang Z Y, and Zu Q F, Mat Sci Eng A 690 (2017) 387.

    Article  CAS  Google Scholar 

  • Lin G Y, Li K, Feng D, Feng Y P, Song W T, Xiao M Q, T Nonferr Metal Soc 29 (2019) 1592.

    Article  CAS  Google Scholar 

  • Liu M W, Zheng R X, Xiao W L, Li J, Li G D, Peng Q M, and Ma C L, Scr Mater 201 (2021) 113970

    Article  CAS  Google Scholar 

  • Ma P, Jia Y, Prashanth K G, Yu Z S, Li C G, Zhao J, Yang S L, and Huang L X, J Mater Res 32 (2017) 2210.

    Article  CAS  Google Scholar 

  • Ma G D, Li L, Xi S Y, Xiao Y, Li Y K, Yuan Z T, He Y H, Zhou R F, and Jiang Y H, Mater Charact 176 (2021) 111143.

    Article  CAS  Google Scholar 

  • Mao G, Liu S, Wu Z, Zhu C C, Gao W L, Mater Lett 271 (2020).

  • Miguel Á, Suárez R, Raúl P, Elia G P, Alfredo H, José F C, Mater Res (2022).

  • Samat S, Omar M Z, Baghdadi A H, Mohamed I F, Rajabi A, Aziz A M, J Mater Res Technol 95 (2021) 145.

    CAS  Google Scholar 

  • Uhlmann E, and Jaczkowski R, Surf Coat Tech 352 (2018) 483.

    Article  CAS  Google Scholar 

  • Uzun O, Karaaslan T, Gogebakan M, Keskin M, J Alloy Compd 76 (2004) 149.

    Article  Google Scholar 

  • Vijayana V, Ravi M, and Narayan Prabhu K, Mater. Today: Proceedings 46 (2021) 2732.

    Article  Google Scholar 

  • Wang S, Liu Y, Peng H P, Peng X W, Wang J H, Su X P, Adv Eng Mater 19 (2017) 1700495.

    Article  Google Scholar 

  • Wang S, Fu M, Li X Z, Wang J H, and Su X P, J Mater Process Tech 255 (2018a) 105.

    Article  CAS  Google Scholar 

  • Wang J, Guo Z, Song J L, Hu W X, Li J C, Xiong S M, Mater Des 137 (2018b) 176.

    Article  CAS  Google Scholar 

  • Xu Y J, Deng Y, Casari D, Ragnvald H, Mathiesen, Li Y J, J Alloy Compd 832 (2020) 154948.

    Article  CAS  Google Scholar 

  • Xu G P, Wang K, Lv X, Li H N, Jiang H Y, Wang Q D, Ding W J, Mater Charact 178 (2021).

  • Zhang Y H, Ye C Y, Xu Y Y, Zhong H G, Chen X R, Miao X C, Song C J, and Zhai Q J, Metals 7 (2017) 184.

    Article  Google Scholar 

  • Zhang L, Chen S Y, Li Q H, and Chang G W, Mater Des 193 (2020) 108853

    Article  CAS  Google Scholar 

  • Zhang S Y, Wang X, Liu X, Mo Y T, Wang C, Cheng T, Ivasishin O, and Wang H Y, J Mater Res Technol 16 (2021) 922.

    Article  Google Scholar 

  • Zheng Z K, Ji Y J, Mao W M, Yue R, and Liu Z Y, Prog Nat Sci 27 (6), (2017) 1264.

    CAS  Google Scholar 

  • Zheng Q J, Zhang L L, Jiang H X, Zhao J Z, and He J, J Mater Sci Technol 47 (2020) 142.

    Article  CAS  Google Scholar 

  • Zuo M, Liu X F, Sun Q Q, and Jiang K, J Mater Res Technol 209 (2009) 5504.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Science Foundation of China (No. 52071032) and Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22_3034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhou, H., Liu, Y. et al. Effect of Cooling Conditions on the Solidification Microstructure and Mechanical Properties of Al–18Si Alloy. Trans Indian Inst Met 76, 2827–2833 (2023). https://doi.org/10.1007/s12666-023-02980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02980-8

Keywords

Navigation