Skip to main content
Log in

The Effect of FeO on Transport Properties of Dephosphorization Slag from Microstructure: A Molecular Dynamics Simulation Study

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Since CaO–SiO2–P2O5–FeO is one of the essential slag systems in metallurgical processes, it is important to explore its structure and transport properties for efficient dephosphorization. Molecular dynamics simulations were used to examine the effect of FeO on the structure and transport properties of CaO–SiO2–P2O5–FeO slag in this work. The analysis revealed that the coordination numbers of Ca–Si and P–Ca decreased from 4.3 to 2.66 and 8.12 to 5.88, respectively, with increasing FeO. The release of Ca2+ from the calcium silicate and calcium phosphate phases by the network modifier Fe2+ led to the transformation of high-temperature to low-temperature minerals. Simultaneously, the bond angle of Si–O–Si grows from 151.74° to 156.43°, and the [SiO4] network structure is in a metastable state. The formation of a low-temperature mineral phase and a low-stability structure reduces the viscosity of dephosphorization slag. Fe2+ increases the self-diffusion rate of Ca2+, which facilitates the dephosphorization reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang X M, Li J Y, Chai G M, Duan D P, and Zhang J, Metall Mater Trans B-Proc Metall Mater Proc Sci 47 (2016) 2279. https://doi.org/10.1007/s11663-016-0652-7

    Article  CAS  Google Scholar 

  2. Lin W H, Jiao S Q, Zhou K X, Sun J K, Feng X M, and Liu Q, Front Mater 7 (2020) 602522. https://doi.org/10.3389/fmats.2020.602522

    Article  Google Scholar 

  3. Li G Q, Zhu C Y, Li Y J, Huang X Y, and Chen M, Steel Res Int 84 (2013) 687. https://doi.org/10.1002/srin.201200216

    Article  CAS  Google Scholar 

  4. Du C M, Gao X, Ueda S, and Kitamura S, J Sust Metall 3 (2017) 671. https://doi.org/10.1007/s40831-017-0123-7

    Article  Google Scholar 

  5. Ito K, and Terasawa M, Steel Res Int 80 (2009) 733. https://doi.org/10.2374/SRI09SP076

    Article  Google Scholar 

  6. Xia X J, Guo X, Li J, Fan D D, and Wang S J, Steel Res Int 89 (2018) 1800104. https://doi.org/10.1002/srin.201800104

    Article  CAS  Google Scholar 

  7. Yang X M, Li J Y, Chai G M, Duan D P, and Zhang J, Metall Mater Trans B-Proc Metall Mater Proc Sci 47 (2016) 2330. https://doi.org/10.1007/s11663-016-0654-5

    Article  CAS  Google Scholar 

  8. Sun H, Yang J, Zhang R H, and Yang W K, Metall Mater Trans B-Proc Metall Mater Proc Sci 52 (2021) 3403. https://doi.org/10.1007/s11663-021-02270-y

    Article  CAS  Google Scholar 

  9. Wu T, Wang Q, Yu C F, and He S P, J Non-Cryst Solids 450 (2016) 23. https://doi.org/10.1016/j.jnoncrysol.2016.07.024

    Article  CAS  Google Scholar 

  10. Stein D J, and Spera F J, Am Miner 80 (1995) 417. https://doi.org/10.2138/am-1995-5-601

    Article  CAS  Google Scholar 

  11. Guillot B, and Sator N, Cosmochim Acta 71 (2007) 1249. https://doi.org/10.1016/j.gca.2006.11.015

    Article  CAS  Google Scholar 

  12. Wang Z J, Shu Q F, Sridhar S, Zhang M, Guo M, and Zhang Z T, Metall Mater Trans B-Proc Metall Mater Proc Sci 46 (2015) 758. https://doi.org/10.1007/s11663-014-0270-1

    Article  CAS  Google Scholar 

  13. Shimoda K, and Saito K, ISIJ Int 47 (2007) 1275. https://doi.org/10.2355/isijinternational.47.1275

    Article  CAS  Google Scholar 

  14. Ma C, Skoglund N, Carlborg M, and Broström M, Chem Eng Sci 215 (2020) 115464. https://doi.org/10.1016/j.ces.2019.115464

    Article  CAS  Google Scholar 

  15. Shen Y Y, Chong J K, Huang Z N, Tian J K, Zhang W J, Tang X C, Ding W W, and Du X Y, Materials 12 (2019) 2562. https://doi.org/10.3390/ma12162562

    Article  CAS  Google Scholar 

  16. Diao J, Fan G Z, Liu X, and Xie B, Metall Mater Trans B-Proc Metall Mater Proc Sci 45 (2014) 1942. https://doi.org/10.1007/s11663-014-0092-1

    Article  CAS  Google Scholar 

  17. Dai X, Bai J, Huang Q, Liu Z, Bai X J, Cao R J, Wen X D, Li W, and Du S Y, Fuel 237 (2019) 163. https://doi.org/10.1016/j.fuel.2018.09.127

    Article  CAS  Google Scholar 

  18. Jiang C H, Li K J, Zhang J L, Liu Z J, Niu L L, Liang W, Sun M M, Ma H B, and Wang Z M, Chem Eng Sci 210 (2019) 115226. https://doi.org/10.1016/j.ces.2019.115226

    Article  CAS  Google Scholar 

  19. Fan G Z, Diao J, Jiang L, Zhang Z, and Xie B, Mater Trans 56 (2015) 655. https://doi.org/10.2320/matertrans.M2014363

    Article  CAS  Google Scholar 

  20. Urbain G, Steel Res 58 (1987) 111. https://doi.org/10.1002/srin.198701513

    Article  CAS  Google Scholar 

  21. Mills K C, and Sridhar S, Ironmak Steelmak 26 (1999) 262. https://doi.org/10.1179/030192399677121

    Article  CAS  Google Scholar 

  22. Iida T, Sakai H, Kita Y, and Murakami K, High Temp Mater Process 19 (2000) 153. https://doi.org/10.1515/HTMP.2000.19.3-4.153

    Article  CAS  Google Scholar 

  23. Delaye J M, Louis-Achille V, and Ghaleb D, J Non-Cryst Solids 210 (1997) 232. https://doi.org/10.1016/S0022-3093(96)00604-7

    Article  CAS  Google Scholar 

  24. Diao J, Zhang Q, Qiao Y, Jiang L, and Xie B, High Temp Mater Process 37 (2018) 141. https://doi.org/10.1515/htmp-2016-0159

    Article  CAS  Google Scholar 

  25. Belashchenko D K, and Ostrovskii O I, Inorg Mater 38 (2002) 48. https://doi.org/10.1023/A:1019726827460

    Article  CAS  Google Scholar 

  26. Du Y Z, Yuan Y G, Li L, Long M J, Duan H M, and Chen D F, Mol Liq 339 (2021) 116818. https://doi.org/10.1016/j.molliq.2021.116818

    Article  CAS  Google Scholar 

  27. Ma S F, Li K J, Zhang J L, Jiang C H, Bi Z H, Sun M M, Wang Z M, and Li H T, J Mol Liq 325 (2021) 115106. https://doi.org/10.1016/j.molliq.2020.115106

    Article  CAS  Google Scholar 

  28. Du C M, Lv N N, Su C, Liu W M, Yang J X, and Wang H C, J Iron Steel Res Int 26 (2019) 1162. https://doi.org/10.1007/s42243-018-00224-4

    Article  CAS  Google Scholar 

  29. Belashchenko D K, and Ostrovski O I, Inorg Mater 38 (2002) 799. https://doi.org/10.1023/A:1019726827460

    Article  CAS  Google Scholar 

  30. Gao L F, Liu X C, Bai J, Kong L X, Bai Z Q, and Lia W, Chem Eng Sci 231 (2020) 116285. https://doi.org/10.1016/j.ces.2020.116285

    Article  CAS  Google Scholar 

  31. Nevins D, Spera F J, and Ghiorso M S, Am Miner 94 (2009) 975. https://doi.org/10.2138/am.2009.3092

    Article  CAS  Google Scholar 

  32. Xuan W W, Wang H N, Guhl S, Zhang J S, and Meyer B, Energy Fuels 34 (2020) 13698. https://doi.org/10.1021/acs.energyfuels.0c02425

    Article  CAS  Google Scholar 

  33. Jiang D W, Zhang J L, Wang Z Y, Feng C F, Jiao K X, and Xu R Z, JOM 72 (2020) 3908. https://doi.org/10.1007/s11837-020-04360-9

    Article  Google Scholar 

  34. Xuan W W, Guhl S, Zhang Y Q, Zhang J S, and Meyer B, Ceram Int 48 (2022) 28291. https://doi.org/10.1016/j.ceramint.2022.06.136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate the financial support received from the National Natural Science Foundation of China (51874094, U1908225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, Y., Wan, X. et al. The Effect of FeO on Transport Properties of Dephosphorization Slag from Microstructure: A Molecular Dynamics Simulation Study. Trans Indian Inst Met 76, 3165–3173 (2023). https://doi.org/10.1007/s12666-023-02967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02967-5

Keywords

Navigation