Skip to main content

Advertisement

Log in

Field-Assisted Sintering on Microstructural Evolution and Properties of TiAl Intermetallic Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The addition of minor fractions of grain refiners commonly improves the mechanical properties of TiAl intermetallic alloys. In this study, Ti-36 wt.% Al powders were consolidated using a field-assisted sintering technique without adding grain refiners. Various temperatures (650–1300 °C) and pressures (14–50 MPa) were used to elucidate the structure–property relationship. An intermetallic of 99.9% relative density with a corresponding microhardness value of 327 ± 6 HV0.5 was achieved for alloys sintered at 1300 °C and 16 MPa. Alloys sintered at 1100 °C displayed a microstructure consisting of citrus Ti-rich grains, while a duplex microstructure consisting of γ-TiAl + α2-Ti3Al lamellae, and γ-TiAl phases were observed at 1300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Williams J C, and Boyer R R, Metals 10 (2020) 705.

    Article  Google Scholar 

  2. Leyens C, and Peters M, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, Weinheim (2006).

    Google Scholar 

  3. Musi M, Galy B, Monchoux J-P, Couret A, Clemens H, and Mayer S, Scripta Materialia 206 (2022) 114233.

    Article  CAS  Google Scholar 

  4. Mishin Y, and Herzig C, Acta Materialia 48 (2000) 589.

    Article  CAS  Google Scholar 

  5. Appel F, Clemens H, and Fischer F, Prog. Mater. Sci. 81 (2016) 55.

    Article  CAS  Google Scholar 

  6. Ai T, Yu N, Feng X, Xie N, Li W, and Xia P, Metals Mater. Int. 21 (2015) 179.

    Article  CAS  Google Scholar 

  7. Aldoshan A A, Spark Plasma Sintering of Titanium Aluminide Intermetallics and Its Composites, Oklahoma State University, Stillwater (2012).

    Google Scholar 

  8. Choudhuri D, Gwalani B, Gorsse S, Komarasamy M, Mantri S A, Srinivasan S G, Mishra R S, and Banerjee R, Acta Materialia 165 (2019) 420.

    Article  CAS  Google Scholar 

  9. Brotzu A, Felli F, and Pilone D, Intermetallics 54 (2014) 176.

    Article  CAS  Google Scholar 

  10. Um T-Y, Abe T, and Sumi S, J. Mater. Synth. Process. 7 (1999) 303.

    Article  CAS  Google Scholar 

  11. Wu X, Intermetallics 14 (2006) 1114.

    Article  CAS  Google Scholar 

  12. Al-Dabbagh J B, Rozman M T, Mahadzir I, Siti Aisyah H, Int. J. Nanoelectronics and Materials 8 (2015) 23.

    Google Scholar 

  13. Saheb N, Iqbal Z, Khalil A, Hakeem A S, Al Aqeeli N, Laoui T, Al-Qutub A, Kirchner R, J. Nanomater. 2012 (2012) 18.

  14. Vanmeensel K, Laptev A, Hennicke J, Vleugels J, and Van der Biest O, Acta Materialia 53 (2005) 4379.

    Article  CAS  Google Scholar 

  15. Skiba T, Haušild P, Karlík M, Vanmeensel K, and Vleugels J, Intermetallics 18 (2010) 1410.

    Article  CAS  Google Scholar 

  16. Munir Z, Anselmi-Tamburini U, and Ohyanagi M, J. Mater. Sci. 41 (2006) 763.

    Article  CAS  Google Scholar 

  17. Wu J, Zhang H, Zhang Y, and Wang X, Mater. Design 41 (2012) 344.

    Article  CAS  Google Scholar 

  18. Yang F, Kong F, Chen Y, and Xiao S, J. Alloys Compd. 496 (2010) 462.

    Article  CAS  Google Scholar 

  19. Shen Z, Johnsson M, Zhao Z, and Nygren M, Spark plasma sintering of alumina. Journal of the American Ceramic Society 85 (2002) 1921.

    Article  CAS  Google Scholar 

  20. Cha S I, Hong S H, and Kim B K, Mater. Sci. Eng. A 351 (2003) 31.

    Article  Google Scholar 

  21. Mei B, and Miyamoto Y, Metall. Mater. Trans. A 32 (2001) 843.

    Article  Google Scholar 

  22. Lagos M, and Agote I, Intermetallics 36 (2013) 51.

    Article  CAS  Google Scholar 

  23. German R M, Sintering Theory and Practice, Wiley-Interscience, 1st Edition, Weinheim (1996), p 568.

    Google Scholar 

  24. Kang S L, Liquid Phase Sintering, Sintering of Advanced Materials, Elsevier, Amsterdam (2010), p 110.

    Book  Google Scholar 

  25. Nonaka K, Tanosaki K, Fujita M, Chiba A, Kawabata T, and Izumi O, Mater. Trans. JIM 33 (1992) 802.

    Article  CAS  Google Scholar 

  26. Kasahara K, Hashimoto K, Doi H, and Tsujimoto T, Jpn. Inst. Metals J. 51 (1987) 278.

    Article  CAS  Google Scholar 

  27. Ishiyama S, Buchkremer H P, and Stöver D, Mater. Trans. 43 (2002) 2331.

    Article  CAS  Google Scholar 

  28. Mwamba L, Cornish L, and Van Der Lingen E, J. South. Afr. Inst. Min. Metall. 112 (2012) 517.

    CAS  Google Scholar 

  29. McCullough C, Valencia I J, Levi C G, and Mehtabian R, Acta Metals 41 (1989) 1321.

    Article  Google Scholar 

  30. Huy T D, Fujiwara H, Yoshida R, and Miyamoto H, Mater. Trans. 55 (2014) 1091.

    Article  CAS  Google Scholar 

  31. Cui N, Wang X-P, Kong F-T, Chen Y-Y, and Zhou H-T, Rare Metals 35 (2016) 42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the UNESCO-ANSTI/DAAD In-Region fellowship, South African Department of Science and Technology (DST)—National Research Foundation (NRF), and Tshwane University of Technology (TUT) for the financial support to carry out this research. The assistance received from the Institute for NanoEngineering Research (INER) in TUT for conducting this research is hereby acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Andrews.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsiah-Baafi, E., Andrews, A., Ramakokovhu, M.M. et al. Field-Assisted Sintering on Microstructural Evolution and Properties of TiAl Intermetallic Alloys. Trans Indian Inst Met 76, 2625–2633 (2023). https://doi.org/10.1007/s12666-023-02948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02948-8

Keywords

Navigation