Skip to main content
Log in

The Effect of Porosity, Oxygen and Phase Morphology on the Mechanical Properties of Selective Laser Melted Ti-6Al-4V with Respect to Annealing Temperature

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study, Ti-6Al-4V alloy was fabricated by Selective Laser Manufacturing (SLM) technique and subsequently subjected to an annealing treatment at, above and below the β transition temperature. We emphasized the influence of porosity, oxygen and phase morphology on the strength, ductility and elongation of SLM-manufactured Ti-6Al-4V and compared the alloy's properties with conventionally manufactured Ti-6Al-4V from the literature. The as-built Ti-6Al-4V sample showed a very high strength due to acicular martensite, and the growth of α+β lamellae on heat treatment improved ductility. Energy Dispersive Spectroscopy (EDS), Optical and Scanning Electron Microscopy (SEM) were used to identify the chemical composition, calculate lamellar width and analyze the fracture mechanisms. The grain size and the average thickness of α lamellae, inter-granular β and prior β grain boundary increased with annealing temperature. The porosity and oxygen content of the samples were found to have a consequential effect on the strength, especially in as-built and high-temperature annealing conditions and optimum mechanical properties were observed in SLM Ti-6Al-4V annealed at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Neikter M, Åkerfeldt P, Pederson R, and Antti M-L, IOP Conf Series: Mater Sci Eng 258, (2017) 012007

    Article  Google Scholar 

  2. Hong S Y, Ding Y, and Jeong W, Int J Mach Tools Manuf 41 (15), (2001) 2271–2285.

    Article  Google Scholar 

  3. Jerold B D, and Kumar M P, ASME J Manuf Sci Eng 135 (3), (2013) 031005

    Article  Google Scholar 

  4. Sivalingam V, Sun J, Yang B, Liu K, and Raju R, J Manuf Process 36, (2018) 188–196.

    Article  Google Scholar 

  5. Chetan Ghosh S, and Venkateswara Rao P, J Cleaner Prod 100, (2015) 17–34.

    Article  Google Scholar 

  6. Singaravel B, Shekar K C, Reddy G G, et al., Ain Shams Eng J 11 (1), (2019) 143–147.

    Article  Google Scholar 

  7. Liu S, and Shin Y C, Mater Design 164, (2019) 107552

    Article  CAS  Google Scholar 

  8. Ngo T D, Kashani A, Imbalzano G, Nguyen K T Q, and Hui D, Compos Part B: Eng 143, (2019) 172–196.

    Article  Google Scholar 

  9. Li N, Huang S, Zhang G, Qin R, Liu W, Xiong H, and Blackburn J, J Mater Sci Technol 35 (2), (2018) 242–269.

    Article  Google Scholar 

  10. Xu Y, Zhang D, Guo Y, Hu S, Wu X, and Jiang Y, J Alloys Compd 816, (2020) 152536

    Article  CAS  Google Scholar 

  11. Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, and Qian M, Acta Mater 85, (2015) 74–84.

    Article  CAS  Google Scholar 

  12. Simonelli M, Tse Y Y, and Tuck C, J Mater Res 29 (17), (2014) 2028–2035.

    Article  CAS  Google Scholar 

  13. Malý M, Höller C, Skalon M, Meier B, Koutný D, Pichler R, and Paloušek D, Materials 12 (6), (2019) 930.

    Article  Google Scholar 

  14. Al-Rubaie K S, Melotti S, Rabelo A, Paiva J M, Elbestawi M A, and Veldhuis S C, J Manuf Processes 57, (2020) 768–786.

    Article  Google Scholar 

  15. Simonelli M, Tse Y Y, and Tuck C, Mater Sci Eng: A 616, (2014) 1–11.

    Article  CAS  Google Scholar 

  16. Zhou B, Zhou J, Li H, and Lin F, Mater Sci Eng: A 724, (2018) 1–10.

    Article  CAS  Google Scholar 

  17. Liu L, Chen C, Zhao R, Wang X, Tao H, Shuai S, and Ren Z, Addit Manuf 46, (2021) 102142

    CAS  Google Scholar 

  18. Yang J, Yu H, Yin J, Gao M, Wang Z, and Zeng X, Mater Design 108, (2016) 308–318.

    Article  CAS  Google Scholar 

  19. Do D K, and Li P, Virt Phys Protot 11 (1), (2016) 41–47.

    Article  Google Scholar 

  20. Liu J, Sun Q, Zhou C, Wang X, Li H, Guo K, and Sun J, Mater Sci Eng A 766, (2019) 138319

    Article  CAS  Google Scholar 

  21. Song B, Dong S, Liao H, and Coddet C, Int J Adv Manuf Technol 61 (9–12), (2011) 967–974.

    Google Scholar 

  22. Manvatkar V, De A, and DebRoy T, Mater Sci Technol 31 (8), (2014) 924–930.

    Article  Google Scholar 

  23. Sun J, Yang Y, and Wang D, Optics Laser Technol 49, (2013) 118–124.

    Article  CAS  Google Scholar 

  24. Shi X, Ma S, Liu C, Chen C, Wu Q, Chen X, and Lu J, Materials 9 (12), (2016) 975.

    Article  Google Scholar 

  25. Shao M, Vijayan S, and Jinschek J, Microsc Microanal 27 (S1), (2021) 2682–2684.

    Article  Google Scholar 

  26. Gong H, Rafi K, Gu H, Janaki-Ram G D, Starr T, and Stucker B, Mater Des 86, (2015) 545–554.

    Article  CAS  Google Scholar 

  27. Zhang X-Y, Fang G, Leeflang S, Böttger A J, Zadpoor A, and Zhou J, J Alloys Compd 735, (2018) 1562–1575.

    Article  CAS  Google Scholar 

  28. Khorasani A M, Gibson I, Awan U S, and Ghaderi A, Addit Manuf 2019 (25), (2019) 176–186.

    Google Scholar 

  29. Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard H A, and Maier H J, Int J Fatigue 48, (2013) 300–307.

    Article  CAS  Google Scholar 

  30. Tammas-Williams S, Withers P J, Todd I, and Prangnell P B, Scripta Materialia 122, (2016) 72–76.

    Article  CAS  Google Scholar 

  31. Vrancken B, Thijs L, Kruth J-P, and Van Humbeeck J, J Alloys Compd 541, (2012) 177–185.

    Article  CAS  Google Scholar 

  32. Vilaro T, Colin C, and Bartout J D, Metall Mater Trans A 42 (10), (2011) 3190–3199.

    Article  CAS  Google Scholar 

  33. Liang Z, Sun Z, Zhang W, Wu S, and Chang H, J Alloys Compd 782, (2019) 1041–1048.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Science and Engineering Research Board, Department of Science and Technology (SERB-DST; File No. CRG/2018/002483, GAP 03/19), India, for offering financial support to carry out the research work. The support staff of the Central Instrumentation Facility and Additive Manufacturing Facility of CSIR-CECRI, Karaikudi, for the characterization and 3D printing work, respectively, is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sai Deepak Kumar, Deepak K. Pattanayak or C. Vanitha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai Deepak Kumar, A., Pattanayak, D.K., Fayaz Anwar, M. et al. The Effect of Porosity, Oxygen and Phase Morphology on the Mechanical Properties of Selective Laser Melted Ti-6Al-4V with Respect to Annealing Temperature. Trans Indian Inst Met 76, 1789–1798 (2023). https://doi.org/10.1007/s12666-023-02886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02886-5

Keywords

Navigation