Skip to main content

Advertisement

Log in

Microstructure and Shear properties of Sn–xZn Transient Liquid Phase Bonding in 3D-Chip Stacking Packaging

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The microstructure and shear property of Cu/Sn–xZn/Cu (x = 0, 2, 5, 9, 30, 70 wt.%) composite solder joints fabricated by transient liquid phase (TLP) bonding were investigated. The results showed that the appropriate amount of Zn particles inhibited Cu6(Sn, Zn)5 phase formation at the Cu/solder interface. The Zn particles can improve the interface IMC morphology of composite solder joints, the interface IMC thickness of Cu/Sn–30Zn/Cu solder joint is only 3.89 μm, and the excessive (30–70 wt.%) Zn particles are harmful to the composite solder joints. Doping 2–9 wt.% Zn particles can improve the shear strength. The maximum shear strength value of the Cu/Sn–9Zn/Cu composite solder joint reaches 14.18 MPa. The fracture mechanism is mainly ductile brittle mixed fracture, which occurs near the Interface reaction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shao H K, Wu A P, Bao Y D, Zhao Y, Zou G S, and Liu L, Mater. Character. 469 (2018) 144.

    Google Scholar 

  2. Dele-Afolabi T T, Azmah Hanim M A, Norkhairunnisa M, Yusoff H M, and Suraya M T, J. Alloys Compds. 368 (2015) 649.

    Google Scholar 

  3. Kannojia H K, and Dixit P, J. Mater. Res.-Mater. Electron. 6742 (2021) 32.

    Google Scholar 

  4. Zhang L, Liu Z, Chen S, Wang Y, Long W, Guo Y, Wang S, Ye G, and Liu W, J. Alloys Compds. 980 (2018) 750.

    Google Scholar 

  5. Zhu Z X, Li C C, Liao L L, Liu C K, and Kao C R, J. Alloys Compd. 340 (2016) 671.

    Google Scholar 

  6. Ide E, Angata S, Hirose A, and Kobayashi K F, Acta Mater. 2385 (2005) 53.

    Google Scholar 

  7. Liu H, Wang K, Aasmundtveit K E, and Hoivik N, J. Electron. Mater. 2453 (2012) 41.

    Google Scholar 

  8. Han X, Li X, and Yao P, Soldering Surface Mount Technol. 79 (2021) 34.

    Google Scholar 

  9. Zhang L, and Zhong S J, Front. Mater. 645782 (2021) 8.

    Google Scholar 

  10. Zhang F W, Liu J, Yang F B, Hu Q, He H J, and Xu J, Chin. J. Rare Met. 619 (2005) 29.

    Google Scholar 

  11. Shi Y P, Xue S B, Wang J X, and Gu R H, Weld. Joining. 14 (2007) 4.

    Google Scholar 

  12. Wei J M, Wei G Q, Kang Y Q, and Liu L, Spec. Cast. Nonferrous Alloys. 11 (2019) 39.

    Google Scholar 

  13. Wu Y, Wei X Q, Zhou L, and Zhou Z G, Mater. Rev. 6 (2005) 19.

    Google Scholar 

  14. Shao H K, Wu A P, Bao Y D, and Zhao Y, Mater. Sci. Eng. A. 221 (2017) 680.

    Google Scholar 

  15. Hang C J, Tian Y H, Zhang R, and Yang D S, J Mater Sci Mater Electron 3905 (2013) 24.

    Google Scholar 

  16. Li Q Q, Chan Y C, Zhang K L, and Yung K C, Microelectron Eng. 52 (2014) 122.

    Google Scholar 

  17. Wang Y W, Yang T L, Wu J Y, and Kao C R, J Alloys Compd. 570 (2018) 750.

    Google Scholar 

  18. Shao H K, Wu A P, Bao Y D, and Zhao Y, J Mater Sci. 3508 (2017) 52.

    Google Scholar 

  19. Chu K, Sohn Y, and Moon C, Scripta Materialia. 113 (2015) 109.

    Google Scholar 

  20. Bosco N S, and Zok F W, Acta Materialia. 2019 (2005) 53.

    Google Scholar 

  21. Liu X D, He S L, and Nishikawa H S, Scripta Materialia. 101 (2016) 110.

    Google Scholar 

  22. Liu B L, Tian Y H, Feng J Y, and Wang C X, J Mater Sci 1943 (2017) 52.

    Google Scholar 

  23. Nguyen V L, Kim S H, Jeong J W, Lim T S, Yang D Y, Kim K B, Kim Y J, Lee J H, Kim Y J, and Yang S, Electron. Mater. Lett. 420 (2017) 13.

    Google Scholar 

  24. Mao J, Yang W C, Song Q Q, Lv Y, Jiang S W, Li Y T, and Zhan Y Z, J Mater Res-Mater Electron 10843 (2021) 32.

    Google Scholar 

  25. Wang F J, Zhou L L, Wang X J, and He P, J Alloys Compd 639 (2016) 688.

    Google Scholar 

  26. Yang L, Xu Y, Zhang Y C, Lu K J, Qiao J, Yang Y, Feng X, and Gao H M, J Mater Sci: Mater Electron 8387 (2021) 32.

    Google Scholar 

  27. Yang L, Zhu L, Zhang Y C, Zhou S Y, Xiong Y F, and Wu P C, Mater Res Exp 026304 (2018) 5.

    Google Scholar 

  28. Paul A, Ghosh C, and Boettinger W J, Metall Mater Trans A 952 (2011) 42.

    Google Scholar 

  29. Ladani L, Int J High Speed Electron Syst 1550006 (2015) 24.

    Google Scholar 

  30. Frederikse H P R, Fields R J, and Feldman A, J Appl Phys 2879 (1992) 72.

    Google Scholar 

  31. Yu C, Yang Y, Wang K, Xu J J, Chen J M, and Lu H, J Mater Sci: Mater Electron 124 (2012) 23.

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by by the National Natural Science Foundation of China (Grant nos. 51865006 and 52165068), Guangxi Natural Science Foundation Project (Grant No. 2020GXNSFAA297004) and Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi (Grant No. 2021KY0787).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Liu or Xiang Yu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, X.Y., Yang, L. et al. Microstructure and Shear properties of Sn–xZn Transient Liquid Phase Bonding in 3D-Chip Stacking Packaging. Trans Indian Inst Met 76, 2757–2763 (2023). https://doi.org/10.1007/s12666-022-02866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02866-1

Keywords

Navigation