Skip to main content
Log in

Study on Recrystallization Initiation Model and Microstructure Evolution Mechanism of 18CrNimo7-6 Steel During Hot Deformation

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The hot deformation behavior of 18CrNiMo7-6 steel at temperatures of 900 ~ 1150 °C and strain rate of 0.01 ~ 5 s−1 was studied by isothermal single-pass compression experiment. The critical recrystallization model was used to determine the relationship between the critical stress and the peak stress as \(\sigma_{{\text{c}}} /\sigma_{{\text{p}}} = 0.89\). Meanwhile, the dynamic recrystallization mechanism of the samples at different deformation stages was analyzed by electron backscatter diffraction (EBSD) and metallographic microscope. The microstructure evolution shows the following: when the strain is 0.05, the work hardening is the main mechanism, and the lattice distortion near the grain boundary leads to the accumulation of dislocations, which provides the impetus for the recrystallization nucleation at the grain boundary; when the strain is 0.2, the dynamic recrystallization mechanism crystal has just started, and the small-sized recrystallized grains are formed at the grain boundary; in the meantime, dislocation rearrangement occurs in the coarse grain. When the strain is 0.5, the dynamic recrystallization consumes a large number of low-angle grain boundaries into high-angle grain boundaries by means of subgrain rotation and finally forms fine recrystallized grains in the coarse grains. This process will continue until the end of recrystallization, and the dislocations in the material matrix will tend to homogenize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mandal P, Olasolo M, Da Silva L, and Lalvani H, Metallur Mater Transactions (2020). https://doi.org/10.1007/s11661-020-05728-x

    Article  Google Scholar 

  2. An X, Tian Y, Wang B, Jia T, Wang H, and Wang Z, Surf Coat Technol (2021). https://doi.org/10.1016/J.SURFCOAT.2021.127348

    Article  Google Scholar 

  3. Yamamoto Y, Muralidharan G, and Brady M P, Scripta Materialia 69 (2013) 816. https://doi.org/10.1016/j.scriptamat.2013.09.005

    Article  CAS  Google Scholar 

  4. Chen L L, Luo R, Yang Y T, Peng C T, Gui X, Zhang J, Song K Y, Gao P, and Cheng X N, Trans Indian Inst Met (2019). https://doi.org/10.1007/s12666-019-01674-4

    Article  Google Scholar 

  5. Mandal S, Bhaduri A K, and Subramanya Sarma V, Metallur Mater Transactions 43 (2012) 2056. https://doi.org/10.1007/s11661-011-1012-5

    Article  CAS  Google Scholar 

  6. Xie Y, Wang Q, Chen Z, Wu X, Liu H, and Wang Z, Metals (2022). https://doi.org/10.3390/MET12050838

    Article  Google Scholar 

  7. Fang B, Ji Z, Liu M, Tian G, Jia C, Zeng T, Hu B, and Chang Y, Mater. Sci. Eng. A. (2014). https://doi.org/10.1016/j.msea.2013.11.016

    Article  Google Scholar 

  8. Wei Z, Peng G, Qian L, Shewei X, and Jun C, Rare Metal Mater Eng 45 (2016) 1732.

    Google Scholar 

  9. Wang X, Chandrashekhara K, Lekakh S N, Van Aken D C, and O’Malley R J, Steel Res Int (2019). https://doi.org/10.1002/srin.201700565

    Article  Google Scholar 

  10. Duan C, Zhang F, Qin S, Sun W, and Wang M, J Mech Sci Technol (2018). https://doi.org/10.1007/s12206-018-0828-y

    Article  Google Scholar 

  11. Gaofei L, Changqing L, and Yuan F, Steel Res Int (2012). https://doi.org/10.1002/srin.201100319

    Article  Google Scholar 

  12. Huang C Q, Deng J, Wang S X, and Liu L L, Mater Sci Eng A (2017). https://doi.org/10.1016/j.msea.2017.04.086

    Article  Google Scholar 

  13. Dai Q, Deng Y, Wang Y, Huang W, Materials (Basel, Switzerland) (2020) https://doi.org/10.3390/ma13214982

  14. Lin Y C, Chen X M, Wen D X, and Chen M S, Comput Mater Sci (2014). https://doi.org/10.1016/j.commatsci.2013.11.003

    Article  Google Scholar 

  15. Poliak E I, and Jonas J J, ISIJ Int. (2003). https://doi.org/10.2355/isijinternational.43.684

    Article  Google Scholar 

  16. Mirzadeh H, Cabrera J M, and Najafizadeh A, Acta Materialia. (2011). https://doi.org/10.1016/j.actamat.2011.07.008

    Article  Google Scholar 

  17. Lin Y C, Liang Y J, Chen M S, and Chen X M, Appl Phys A (2017). https://doi.org/10.1007/s00339-016-0683-6

    Article  Google Scholar 

  18. Luo R, Zheng Q, Zhu J J, Guo S, Li D S, Xu G F, and Cheng X N, Rare Metals (2019). https://doi.org/10.1007/s12598-016-0871-8

    Article  Google Scholar 

  19. Geng P, Qin G, Zhou J, and Zou Z, J Manuf Process (2018). https://doi.org/10.1016/j.jmapro.2018.03.017

    Article  Google Scholar 

  20. Ryan N D and McQueen HJ, J. Mater Process Technol (1990) https://doi.org/10.1016/0924-0136(90)90005-F

  21. Zheng Q, Chen L, Luo R, Qiu Y, Peng C T, Liu T, Cui S, Cao Y, Gao P, Cheng X, Transactions Indian Inst. Metals(prepublish) (2020) https://doi.org/10.1007/s12666-020-02096-3.

  22. Najafizadeh A, and Jonas J J, ISIJ Int (2006). https://doi.org/10.2355/isijinternational.46.1679

    Article  Google Scholar 

  23. Zhu H, and Ou H, Mater Sci Eng A (2022). https://doi.org/10.1016/J.MSEA.2021.142473

    Article  Google Scholar 

  24. An J, Zhou M, Tian B, Geng Y, Ban Y, and Liang S, Sci Eng Comp Mater (2021). https://doi.org/10.1515/SECM-2021-0044

    Article  Google Scholar 

  25. Medina S F, and Hernandez C A, Acta Materialia (1996). https://doi.org/10.1016/1359-6454(95)00151-0

    Article  Google Scholar 

  26. Chen W, Zheng C, and Dianzhong L, J Phys Conf Ser (2019). https://doi.org/10.1088/1742-6596/1270/1/012047

    Article  Google Scholar 

  27. Sun Y, Zhang C, Feng H, Zhang S, Han J, Zhang W, Zhao E, Wang H, Mater Charact (prepublish) (2020) https://doi.org/10.1016/j.matchar.2020.110281

  28. Belyakov A, Miura H, and Sakai T, Mater Sci Eng A (1998). https://doi.org/10.1016/S0921-5093(98)00784-9

    Article  Google Scholar 

  29. Li X, Zhao J, Dong L, Misra R D, W X, Wang X and Shang C, Materials (Basel, Switzerland) (2020) https://doi.org/10.3390/ma13225095

  30. Zhang Q, Li Q, Chen X, Bao J, and Chen Z, Mater Sci Eng A (2021). https://doi.org/10.1016/J.MSEA.2021.142026

    Article  Google Scholar 

  31. Kumar N V R, Blandin J J, Desrayaud C, Montheillet F, and Suéry M, Mater Sci Eng (2003). https://doi.org/10.1016/S0921-5093(03)00334-4

    Article  Google Scholar 

Download references

Acknowledgements

This project is sponsored by National Key R&D Program of China ((Nos. 2020YFB2008100)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongying Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Chen, Z., Zhu, Q. et al. Study on Recrystallization Initiation Model and Microstructure Evolution Mechanism of 18CrNimo7-6 Steel During Hot Deformation. Trans Indian Inst Met 76, 1841–1851 (2023). https://doi.org/10.1007/s12666-022-02862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02862-5

Keywords

Navigation