Skip to main content
Log in

Nickel Recovery Optimization and Kinetic Study of Morowali Laterite Ore

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nickel plays a critical role in the mining industry. However, the presence of nickel in the primary source of sulfide minerals is decreasing. Focus has since turned to laterite ore, which contains up to 80% Ni metal. The purpose of this study was to optimize nickel leaching using sulfuric acid and conduct a kinetic analysis to discover the mechanism that best controls the leaching process. To optimize the operating conditions, the response surface method (RSM) with a Box–Behnken design was used. The shrinking core and Zhuravlev, Leshokin, and Templeman (ZLT) models were used to assess the kinetics of the nickel leaching process. Mineral characterization was also performed to gain a better understanding of the sample characteristics. At 2 M sulfuric acid concentration, 10% solid–liquid ratio, and 90 °C temperature, the highest observed Ni recovery was 87% and the apparent activation energy was 32.75 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Georgiou D, and Papangelakis V G, Hydrometallurgy 49 (1998) 23. https://doi.org/10.1016/s0304-386x(98)00023-1

    Article  CAS  Google Scholar 

  2. MacCarthy J, Nosrati A, Skinner W, and Addai-Mensah J, Miner. Eng. 77 (2015) 52. https://doi.org/10.1016/j.mineng.2014.12.031

    Article  CAS  Google Scholar 

  3. Thubakgale C K, Mbaya R K K, and Kabongo K, Miner Eng 54 (2013) 79. https://doi.org/10.1016/j.mineng.2013.04.006

    Article  CAS  Google Scholar 

  4. McRae M E, Nickel-Mineral Commodity Summaries, New York (2021).

  5. Ferreira R, The world nickel market in 2021–Indonesia rising to the top (2021).

  6. Dreisinger D, J South African Inst Min Metall, 109 (2009) 253. Available: http://www.scielo.org.za/scielo.php?script=sci_abstract&pid=S2225-62532009000500001&lng=es&nrm=iso

  7. Hidayat S, Yulianti S, Anggreini D, and Bahtiar S, J Pijar Mipa 16 (2021) 393. https://doi.org/10.29303/jpm.v16i3.2602

    Article  Google Scholar 

  8. Agacayak T, and Zedef V, 9th Int Multidicsciplinary Sci Geoconference EXPO-Mod Manag Mine Prod Geol Environ Prot SGEM 2009 1 (2009) 397.

  9. Crundwell F, Moats M, Robinson T, Ramachandran V, and Davenport W, Extractive Metallurgy of Nickel,Cobalt and Platinim Group Metals (2011) 489.

  10. Santos A L A, Becheleni E M A, Viana P R M, Papini R M, Silvas F P C, and Rocha S D F, Mining Metall Explor 38 (2021) 187. https://doi.org/10.1007/s42461-020-00310-w

    Article  Google Scholar 

  11. Astuti W, Hirajima T, Sasaki K, and Okibe N, Mining Metall Explor 32 (2015) 176. https://doi.org/10.1007/BF03402286

    Article  Google Scholar 

  12. Tzeferis P G, Mining Metall Explor 11 (1994) 125. https://doi.org/10.1007/BF03403052

    Article  CAS  Google Scholar 

  13. Panda L, Rao D S, Mishra B K, and Das B, Mining Metall Explor 31 (2014) 57. https://doi.org/10.1007/BF03402349

    Article  CAS  Google Scholar 

  14. Hosseini Nasab M, Noaparast M, and Abdollahi H, Int J Chem Kinet 52 (2020) 283. https://doi.org/10.1002/kin.21349

    Article  CAS  Google Scholar 

  15. Mohammadreza F, Mohammad N, and Ziaeddin S S, Int J Min Sci Technol 24 (2014) 543. https://doi.org/10.1016/j.ijmst.2014.05.019

    Article  CAS  Google Scholar 

  16. Ochromowicz K, and Leśniewicz T, Physicochem Probl Miner Process 54 (2018) 343. https://doi.org/10.5277/ppmp1828

    Article  CAS  Google Scholar 

  17. Johnson J A, Cashmore B C, and Hockridge R J, Miner Eng 18 (2005) 1297. https://doi.org/10.1016/j.mineng.2005.05.013

    Article  CAS  Google Scholar 

  18. Nazemi M K, Rashchi F, and Mostoufi N, Int J Miner Process 100 (2011) 21. https://doi.org/10.1016/j.minpro.2011.04.006

    Article  CAS  Google Scholar 

  19. Levenspiel O, Chemical Reaction Engineering, 3rd ed. Oregon, John Wiley and Sons (1999). doi: https://doi.org/10.1201/9781420014389.ch11.

  20. Dickinson C F, and Heal G R, Thermochim Acta 340–341 (1999) 89. https://doi.org/10.1016/S0040-6031(99)00256-7

    Article  Google Scholar 

  21. Fan R, A and Gerson A R. Hydrometallurgy 134–135 (2013) 102. https://doi.org/10.1016/j.hydromet.2013.02.004

    Article  CAS  Google Scholar 

  22. Luo J, Li G, Rao M, Peng Z, Zhang Y, and Jiang T, Miner Eng 78 (2015) 38. https://doi.org/10.1016/j.mineng.2015.03.030

    Article  CAS  Google Scholar 

  23. Fan R, and Gerson A R, Hydrometallurgy 134–135 (2013) 102. https://doi.org/10.1016/j.hydromet.2013.02.004

    Article  CAS  Google Scholar 

  24. Luo W, Feng Q, Ou L, Zhang G, and Chen Y, Miner Eng 23 (2010) 458. https://doi.org/10.1016/j.mineng.2009.10.006

    Article  CAS  Google Scholar 

  25. MacCarthy J, Nosrati A, Skinner W, and Addai-Mensah, Chemeca 2014 Processing excellence;Powering our future (2014) 1273. [Online]. Available: https://www.researchgate.net/file.PostFileLoader.html?id=57970a23f7b67ef8c64eeb13&assetKey=AS%3A387993736105986%401469516323592

  26. Azadi F, Saadat S, and Karimi-Jashni A, Iran J Sci Technol Trans Civ Eng 42 (2018) 315. https://doi.org/10.1007/s40996-017-0090-z

    Article  Google Scholar 

  27. Pradhan S, Nayak R, and Mishra S, Int J Environ Sci Technol 19 (2022) 4537. https://doi.org/10.1007/s13762-021-03356-5

    Article  CAS  Google Scholar 

  28. Niaki R, Abazarpoor A, Halali M, Maarefvand M, and Ebrahimi G, Russ J Non-Ferrous Met 56 (2015) 155. https://doi.org/10.3103/S1067821215020145

    Article  Google Scholar 

  29. Milivojevic M, Stopic S, Friedrich B, Stojanovic B, and Drndarevic D, Int J Miner Metall Mater 19 (2012) 584. https://doi.org/10.1007/s12613-012-0599-x

    Article  CAS  Google Scholar 

  30. Guo X Y, Li D, Wu Z, and Tian Q H, Int J Miner Metall Mater 19 (2012) 199. https://doi.org/10.1007/s12613-012-0538-x

    Article  CAS  Google Scholar 

  31. Thubakgale C K, Mbaya R K K, and Shongwe M B, JOM 71 (2019) 4616. https://doi.org/10.1007/s11837-019-03824-x

    Article  CAS  Google Scholar 

  32. Prameswara G, Trisnawati I, Mulyono P, Prasetya A, and Petrus H T B M, JOM 73 (2021) 988. https://doi.org/10.1007/s11837-021-04584-3

    Article  CAS  Google Scholar 

  33. Trisnawati I, Prameswara G, Mulyono P, Prasetya A, and Petrus H T B M, Int J Technol 11 (2020) 804. https://doi.org/10.14716/ijtech.v11i4.4037

    Article  Google Scholar 

  34. Li J, Yang Y, Wen Y, Liu W, Chu Y, Wang R, and Xu Z, Minerals 10 (2020) 1. https://doi.org/10.3390/min10090754

    Article  CAS  Google Scholar 

  35. Javanshir S, Mofrad Z H, and Azargoon A, Physicochem Probl Miner Process 54 (2018) 890, doi: https://doi.org/10.5277/ppmp1891

  36. Habashi F, Handbook of Extractive Metallurgy, I. Singapore, Wiley company (1997).

  37. Stopic S, Friedrich B, and Fuchs R, Erzmetall J Explor Min Metall 56 (2003) 204.

    CAS  Google Scholar 

  38. Xiao W, Liu X, and Zhao Z, Hydrometallurgy 194 (2020) 105353, doi: https://doi.org/10.1016/j.hydromet.2020.105353.

Download references

Acknowledgements

The authors are grateful for the support provided by Politeknik ATI Makassar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan Prameswara.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prameswara, G., Tyassena, F.Y.P., Pasaribu, M. et al. Nickel Recovery Optimization and Kinetic Study of Morowali Laterite Ore. Trans Indian Inst Met 76, 1341–1348 (2023). https://doi.org/10.1007/s12666-022-02858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02858-1

Keywords

Navigation