Skip to main content
Log in

Evaluation of the Parametric Effects of Separation of Coal in Vibration Separator Using Plackett–Burman Design of Experiments

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Plackett–Burman’s design of experiment (DOE) technique provides a mathematical interrelationship between the output parameter and influential input parameters. The vibration separator performance was evaluated by considering three input variables: moisture, inclination, and frequency. Plackett–Burman DOE consists of a minimum number of 12 experimental trials for obtaining the most influential input parameter of the vibration separator. The output parameter of the vibration separator obtained for each experimental trial was separation efficiency. So, the present work provides the most influential input parameter, which highly controls the separation efficiency of the vibration separator for the separation of coal. The model was validated using the residual analysis. Further, the revalidation of the Plackett–Burman DOE mathematical model for the separation of coal was carried out by comparing the closeness of the experimental cube plot and predicted cube plot. Furthermore, the Pareto chart, normal plot, and ANOVA table were utilized to determine the significant input parameter for obtaining higher efficiency of vibration separator. The main effect plot, interactive plots, and optimization results provide the most optimized input parameter for obtaining higher efficiency of coal separation. So, the present work will provide the most influential parameters using Plackett–Burman DOE for separation of coal in the vibration separator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller A, and Sitter R R, Technometrics 43 (2001) 44. https://doi.org/10.1198/00401700152404318

    Article  Google Scholar 

  2. Vanaja K, and Shobha Rani R H, Clin Res Regul Affairs 24 (2007) 1. https://doi.org/10.1080/10601330701220520

    Article  Google Scholar 

  3. Bouziane L, Bendebane F, Ismail F, and Delimi R, Desalination Water Treat 49 (2012) 189. https://doi.org/10.1080/19443994.2012.719318

    Article  CAS  Google Scholar 

  4. Kenari H S, Alinejad Z, Imani M, and Nodehi A, J Microencapsulation 30 (2013) 599. https://doi.org/10.3109/02652048.2013.770096

    Article  CAS  Google Scholar 

  5. Tripathi S K, Bhardwaj N K, and Ghatak H R, Ozone: Sci Eng (2017). https://doi.org/10.1080/01919512.2017.1352483

    Article  Google Scholar 

  6. Fang J, He Z, Zhang Z, and He S, Quality Engineering 30 (2018) 339. https://doi.org/10.1080/08982112.2017.1311414

    Article  Google Scholar 

  7. Akbari H, Ackah L, and Mohanty M, Int J Coal Prep Utiliz (2017). https://doi.org/10.1080/19392699.2017.1389727

    Article  Google Scholar 

  8. Thirugnanasambandham K, Energy Sourc, Part A: Recovery, Utiliz, Environ Effects (2018). https://doi.org/10.1080/15567036.2017.1423416

    Article  Google Scholar 

  9. Kushwaha S K, Kumar A, Ghosh B, et al., Trans Indian Inst Met 74 (2021) 1213. https://doi.org/10.1007/s12666-021-02186-w

    Article  CAS  Google Scholar 

  10. Paul S R, and Bhattacharya S, Trans Indian Inst Met 71 (2018) 1439. https://doi.org/10.1007/s12666-018-1275-2

    Article  CAS  Google Scholar 

  11. Chaurasia R C, Sahu D, and Nikkam S, Trans Indian Inst Met 71 (2018) 1487. https://doi.org/10.1007/s12666-018-1284-1

    Article  CAS  Google Scholar 

  12. Shaik S, Chakravarty S, and Mishra P R, Trans Indian Inst Met 72 (2019) 3129–3137. https://doi.org/10.1007/s12666-019-01778-x

    Article  CAS  Google Scholar 

  13. Mishra A, Gautam S, and Sharma T, Trans Indian Inst Met 72 (2019) 523–531. https://doi.org/10.1007/s12666-018-1504-8

    Article  CAS  Google Scholar 

  14. Mishra P R, Sahu R, and Chakravarty S, Trans Indian Inst Met 74 (2021) 2357. https://doi.org/10.1007/s12666-021-02334-2

    Article  CAS  Google Scholar 

  15. Mohanraj G T, Rahman M R, Joladarashi S, Hanumanthappa H, Shanmugam B K, Vardhan H, and Rabbani S A, Adv Powder Technol 32 (2021) 546. https://doi.org/10.1016/j.apt.2021.01.003

    Article  CAS  Google Scholar 

  16. Shanmugam B K, Vardhan H, Raj M G, Kaza M, Sah R, and Harish H, Int J Coal Preparation Utiliz (2019). https://doi.org/10.1080/19392699.2019.1652170

    Article  Google Scholar 

  17. Shanmugam B K, Vardhan H, Raj M G, Kaza M, Sah R, and Harish H, Energy Sourc, Part A: Recovery, Utiliz, Environ Effects (2019). https://doi.org/10.1080/19392699.2019.1652170

    Article  Google Scholar 

  18. Hanumanthappa H, Vardhan H, Mandela G R, Kaza M, Sah R, and Shanmugam B K, Min, Metall Explor 37 (2020) 481. https://doi.org/10.1007/s42461-019-00167-8

    Article  Google Scholar 

  19. Hanumanthappa H, Vardhan H, Mandela G R, Kaza M, Sah R, and Shanmugam B K, Trans Indian Inst Metals (2020). https://doi.org/10.1007/s12666-020-01999-5

    Article  Google Scholar 

  20. Shanmugam B K, Vardhan H, Raj M G, Kaza M, Sah R, and Harish H, Int J Coal Preparation Utiliz (2020). https://doi.org/10.1080/19392699.2020.1767606

    Article  Google Scholar 

  21. Shanmugam B K, Vardhan H, Raj M G, Kaza M, Sah R, and Harish H, Int J Coal Preparation Utiliz (2021). https://doi.org/10.1080/19392699.2021.1871610

    Article  Google Scholar 

  22. Harish H, Vardhan H, Mandela G R, Kaza M, Sah R, Sinha A, and Shanmugam B K, AIP Conference Proceedings 2204 (2020) 040006. https://doi.org/10.1063/1.5141579

    Article  CAS  Google Scholar 

  23. Shanmugam B K, Vardhan H, Raj M G, Kaza M, Sah R, and Harish H, Int J Coal Preparation Utiliz (2021). https://doi.org/10.1080/19392699.2021.1910505

    Article  Google Scholar 

  24. Shanmugam B K, Vardhan H, Raj M G, Kaza M, Sah R, and Harish H, Int J Coal Preparation Utiliz 42 (2022) 2849. https://doi.org/10.1080/19392699.2021.1923488

    Article  CAS  Google Scholar 

  25. Kumar B S, Harsha Vardhan M, Raj G, Kaza M, Sah R, and Harish H, AIP Confer Proceedings 2204 (2020) 040002. https://doi.org/10.1063/1.5141575

    Article  CAS  Google Scholar 

  26. Wodzinski P, Coal Preparation 23 (2003) 183. https://doi.org/10.1080/07349340302258

    Article  Google Scholar 

Download references

Funding

No funding involved in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharath Kumar Shanmugam.

Ethics declarations

Conflict of Interest

No conflict of interest involved in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugam, B.K., Vardhan, H., Govinda Raj, M. et al. Evaluation of the Parametric Effects of Separation of Coal in Vibration Separator Using Plackett–Burman Design of Experiments. Trans Indian Inst Met 76, 1243–1252 (2023). https://doi.org/10.1007/s12666-022-02842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02842-9

Keywords

Navigation