Skip to main content

Influence of Input Parameters on Sieving Efficiency for Dewatering Vibration Screen Systems

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2021)

Abstract

In dewatering vibration screen, increasing the sieving efficiency plays an important role for mining processes. This paper proposes the influence of the input parameters on the sieving efficiency for dewatering vibration screen systems. The input parameters include the frequency of cyclone motor, the frequency of vibrating motor, and the inclination angle of vibrating screen. The experiment design was conducted based on the Taguchi method. By using ANOVA analysis, the effect of the input parameters on the sieving efficiency was evaluated. Moreover, the optimal input parameters were found in order to maximize the sieving efficiency. The analysis results were examined with the experiment results. The difference between analysis and experiment is 1.18%. For this, the analysis result is significant for predicting the sieving efficiency of the dewatering vibration screen system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., Tong, X., Zhou, B., Ge, X., Ling, J.: Design and Efficiency research of a new composite vibrating screen. Shock Vib. 2018, 1–8 (2018). https://doi.org/10.1155/2018/1293273

    Article  Google Scholar 

  2. Manuel, M.M., Rodríguez, C.G.: Dynamic Modeling of a vibrating screen considering the ore inertia and force of the ore over the screen calculated with discrete element method. Shock Vib. 2018, 1–13 (2018). https://doi.org/10.1155/2018/1714738

    Article  Google Scholar 

  3. Standish, N., Bharadwaj, A.K., Hariri-Akbari, G.: A study of the effect of operating variables on the efficiency of a vibrating screen. Powder Technol. 48, 161–172 (1986). https://doi.org/10.1016/0032-5910(86)80075-4

    Article  Google Scholar 

  4. Li, Z., Tong, X., Zhou, B., Wang, X.: Modeling and parameter optimization for the design of vibrating screens. Miner. Eng. 83, 149–155 (2015). https://doi.org/10.1016/j.mineng.2015.07.009

    Article  Google Scholar 

  5. C. Paper: Design and structure optimization of a reconfigurable vibrating screen for the mining and mineral processing industries (2016)

    Google Scholar 

  6. Jiang, H., et al.: Kinematics characteristics of the vibrating screen with rigid-flexible screen rod and the behavior of moist coal particles during the dry deep screening process. Powder Technol. 319, 92–101 (2017). https://doi.org/10.1016/j.powtec.2017.06.036

    Article  Google Scholar 

  7. Wang, G., Tong, X.: Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation. Min. Sci. Technol. 21, 451–455 (2011). https://doi.org/10.1016/j.mstc.2011.05.026

    Article  Google Scholar 

  8. Zhao, L., Zhao, Y., Liu, C., Li, J., Dong, H.: Simulation of the screening process on a circularly vibrating screen using 3D-DEM. Min. Sci. Technol. 21, 677–680 (2011). https://doi.org/10.1016/j.mstc.2011.03.010

    Article  Google Scholar 

  9. Doerffer, M., Heinrich, R.: Efficient dewatering solutions on vibrating screens. In: Tailings and Mine Waste ‘08, pp. 101–111. CRC Press (2008). https://doi.org/10.1201/9780203882306.ch10

    Chapter  Google Scholar 

  10. Keller, K., Stahl, W.: vibration screens for dewatering theory and practice (1997)

    Google Scholar 

  11. Sung, D.J., Turian, R.M.: Chemically enhanced filtration and dewatering of narrow-sized coal particles. Sep. Technol. 4, 130–143 (1994). https://doi.org/10.1016/0956-9618(94)80016-2

    Article  Google Scholar 

  12. Mohanty, M.K., Palit, A., Dube, B.: A comparative evaluation of new fine particle size separation technologies. Miner. Eng. 15, 727–736 (2002). https://doi.org/10.1016/S0892-6875(02)00169-3

    Article  Google Scholar 

  13. Mohanty, M.K.: Fine coal screening performance enhancement using the Pansep screen. Int. J. Miner. Process. 69, 205–220 (2003). https://doi.org/10.1016/S0301-7516(02)00124-2

    Article  Google Scholar 

  14. Zhang, B., Gong, J., Yuan, W., Jun, F., Huang, Y.: Intelligent prediction of sieving efficiency in vibrating screens. Shock Vibr. 2016, 1–7 (2016). https://doi.org/10.1155/2016/9175417

    Article  Google Scholar 

  15. Dubey, R.K., Climent, E., Banerjee, C., Majumder, A.K.: Performance monitoring of a hydrocyclone based on underflow discharge angle. Int. J. Miner. Process. 154, 41–52 (2016). https://doi.org/10.1016/j.minpro.2016.07.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Thai Nguyen University of Technology (TNUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Thanh Nga Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, T.T.N., Luu, A.T., Mai, D.T. (2022). Influence of Input Parameters on Sieving Efficiency for Dewatering Vibration Screen Systems. In: Nguyen, D.C., Vu, N.P., Long, B.T., Puta, H., Sattler, KU. (eds) Advances in Engineering Research and Application. ICERA 2021. Lecture Notes in Networks and Systems, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-030-92574-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92574-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92573-4

  • Online ISBN: 978-3-030-92574-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics