Skip to main content
Log in

Thermal Expansion and Elastic Properties of Th–6U–4Zr Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The Th–6wt%U–4wt%Zr alloy—a prospective thorium based metallic fuel for fast reactor applications, has been studied for its microstructural, thermal and elastic properties. The X-ray diffractometer of the alloy annealed at 1423 K and quenched showed α-thorium peaks and shrinkage in lattice parameter as compared to thorium. The scanning electron microscope attached to energy dispersive spectroscope revealed uranium rich precipitates dispersed in α-thorium matrix. The Coefficient of thermal expansion (CTE) of the alloy showed a change in slope at 939 K which corresponds to onset of α-U ⇋ β-U phase transformation along with α-thorium phase. The CTE of the alloy was 12.2 × 10–6/K at 1000 K which is comparatively less than uranium alloys fuels. Vickers hardness and elastic properties measurement showed an increase in strength of the alloy due to solid solution strengthening as compared to thorium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kakodkar A, Degweker S B, Revol J P, Bourquin M, and Samec K, Thorium Energy for the World, Springer (2013), p 29.

    Google Scholar 

  2. Allibert M, Ault T, Baron P, Bergeron A, and Wymer R, Introduction of Thorium in the Nuclear Fuel Cycle, Short to long-term considerations, NEA 7224, OECD (2015).

  3. Rubbia C, Revol J P, Bourquin, M, Kadi Y, and Samec K, Thorium Energy for the World, Springer, p 9 (2013).

  4. Farkas M S, Bauer A A, and Dickerson R F, Development of thorium-uranium-base fuel alloys, BMI-1428, Ohio (1960).

  5. Banerjee S, Sinha R K, and Kailas S, J Phys Conf Ser 312 (2011) 062002

    Article  Google Scholar 

  6. Banerjee S, Gupta H P, Nayak A K, and Sehgal B R Nuclear Power from Thorium: Some Frequently Asked Questions, Thorium-Energy for the Future, Springer Nature, Singapore, p 11 (2015).

  7. Mohr D, Chang L K, Feldman E E, Betten P R, and Planchon H P, Nucl Eng Des 101 (1987) 45.

    Article  CAS  Google Scholar 

  8. Fiorina C, Stauff N E, Franceschini F, Wenner M T, and Salvatores M, Ann Nucl Energy 62 (2013) 26.

    Article  CAS  Google Scholar 

  9. Carmack W J, Porter D L, Chang Y I, Hayes S L, and Somers J, J Nucl Mater 392 (2009) 139–150.

    Article  CAS  Google Scholar 

  10. Maiorino J R, D’Auria F, and Jeyhouni R A, An overview of thorium utilization in nuclear reactors and fuel cycles, vol 198, p 1 (2018).

  11. Battles J E, Miller W E, and Gay E C, Pyrometallurgical processing of integral fast reactor metal fuels, ANL/CP-70796 (1991).

  12. Lahm C E, Koenig J F, Pahl R G, Porter D L, and Crawford D C, J Nucl Mater 204 (1993) 119.

    Article  CAS  Google Scholar 

  13. Pahl R G, Porter D L, Crawford D C, and Walters L C, J Nucl Mater 188 (1992) 3.

    Article  CAS  Google Scholar 

  14. Harp J M, Chichester H J M, and Capriotti L, J Nucl Mater 509 (2018) 377.

    Article  CAS  Google Scholar 

  15. Badaeva T A, and Alekseenko G K, The Structure of Alloys of Certain Systems Containing Uranium and Thorium, AEC-tr-5834, USAEC, p 376 (1963).

  16. Martienssen W, Effenberg G, and Ilyenko S, Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data, subvolume C(4), MSI, Springer, New York (2007).

    Google Scholar 

  17. Li Z S, Liu X J, and Wang C P, J Alloys Compd 476 (2009) 193.

    Article  CAS  Google Scholar 

  18. Kittel J H, Horak J A, Murphy W F, and Paine S H, Effects of irradiation on thorium and thorium-uranium alloys, ANL-5674, Illinois (1963).

  19. Cole R H, Wilkinson L E, Development of high strength ternary and quaternary thorium uranium base fuels, USAEC Rep. ATL-A-128, Advanced Technology Laboratory, California (1961).

  20. Copeland G L, Evaluation of thorium-uranium alloys for the unclad-metal breeder reactor, ORNL-4557, Tennessee (1970).

  21. Goffard J W, and Marshall R K, Irradiation behavior of zircaloy-2 clad thorium-uranium-zirconium fuel elements, AEC Research and Development Report, BNWL-479, USA (1967).

  22. ASTM: E1019-11, ASTM International, USA (2011)

  23. Touloukian Y S, Kirby R K, Taylor R E, and Desal P D, Thermophysical Properties of Matter, vol. 12, IPI/Plenum, New York (1975), p 254.

    Google Scholar 

  24. Carlson O N, and Smith J F, Bull Alloy Phase Diagr 8 (1987) 208.

    Article  CAS  Google Scholar 

  25. Dean J A, Lange’s Handbook of Chemistry, 12th edn. McGraw-Hill Inc., New York (1979).

    Google Scholar 

  26. Ragnauth H E, The properties of uranium-zirconium nuclear fuels and methods for improving burnup capability, PhD thesis, University of Manchester, Department of Mechanical, Aerospace and Civil Engineering, p 91 (2021).

  27. Massalski T B, Binary Alloy Phase Diagrams, vol. 2. ASM, Ohio (1986).

    Google Scholar 

  28. Jain D, Characterization and thermophysical investigations on thorium based nuclear fuels and related systems, PhD thesis, HBNI, Mumbai, p 164 (2020)

  29. Kumar U, Kaity S, Arya A, and Banerjee A, J Radioanal Nucl Chem 331 (2022) 1619.

    Article  CAS  Google Scholar 

  30. Janney D E, and Hayes S L, Nucl Tech 203 (2018) 109.

    Article  Google Scholar 

  31. Ashby M F, Materials Selection Mechanical Design, 2nd edn. Oxford (1999).

    Google Scholar 

  32. Das S, Kumar R, Kaity S, Neogy S, and Chaudhari G P, Nucl Eng Des 282 (2015) 116.

    Article  CAS  Google Scholar 

  33. Courtney T H, Mechanical Behavior of Materials, Waveland, Illinois (2005).

  34. Hadi M A, Nasir M T, Roknuzzaman M, Rayhan M A, and Islam A K M A, Phys Status Solidi B253 (2016) 2020.

    Article  Google Scholar 

  35. Thompson R P, and Clegg W J, Curr Opin Solid State Mater Sci 22 (2018) 100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to V. Bhasin, Director, NFG, P.P. Nanekar, Head, PIED, A. Samanta, Suraj Kumar and Kamlen sahu of PIED for their support and technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U., Kaity, S., Kumawat, N. et al. Thermal Expansion and Elastic Properties of Th–6U–4Zr Alloy. Trans Indian Inst Met 76, 1751–1759 (2023). https://doi.org/10.1007/s12666-022-02839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02839-4

Keywords

Navigation