Skip to main content

Advertisement

Log in

Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6 through a combined analysis of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2 μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro- and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Abernethy, Predicting the performance of tungsten in a fusion environment: A literature review, Mater. Sci. Technol., 33(2017), No. 4, p. 388.

    Article  CAS  Google Scholar 

  2. K. Huang, L.M. Luo, X. Zan, et al., Microstructure and damage behavior of W–Cr alloy under He irradiation, J. Nucl. Mater., 501(2018), p. 181.

    Article  CAS  Google Scholar 

  3. T. Fu, K.K. Cui, Y.Y. Zhang, et al., Oxidation protection of tungsten alloys for nuclear fusion applications: A comprehensive review, J. Alloys Compd., 884(2021), art. No. 161057.

  4. H. Bolt, V. Barabash, W. Krauss, et al, Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater., 329–333(2004), p. 66.

    Article  Google Scholar 

  5. D. Stork, P. Agostini, J.L. Boutard, et al., Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment, J. Nucl. Mater., 455(2014), No. 1–3, p. 277.

    Article  CAS  Google Scholar 

  6. J.H. You, Copper matrix composites as heat sink materials for water-cooled divertor target, Nucl. Mater. Energy, 5(2015), p. 7.

    Article  Google Scholar 

  7. R. Neu, C. Hopf, A. Kallenbach, et al., Operational conditions in a W-clad tokamak, J. Nucl. Mater., 367–370(2007), p. 1497.

    Article  Google Scholar 

  8. C.P.C. Wong, C. Baxi, R. Bourque, et al., Helium cooling of fusion reactors, Fusion Eng. Des., 25(1994), No. 1–3, p. 249.

    Article  CAS  Google Scholar 

  9. J. Linke, J. Du, T. Loewenhoff, et al., Challenges for plasma-facing components in nuclear fusion, Matter Radiat. Extrem., 4(2019), No. 5, art. No. 056201.

  10. B. Riccardi, P. Gavila, J. Andrade, et al., Progress of the EU activities for the ITER Divertor Inner Vertical Target procurement, Fusion Eng. Des., 146(2019), p. 1524.

    Article  CAS  Google Scholar 

  11. J. Schlosser, F. Escourbiac, M. Merola, et al., Technologies for ITER divertor vertical target plasma facing components, Nucl. Fusion, 45(2005), No. 6, p. 512.

    Article  CAS  Google Scholar 

  12. K. Krieger, H. Maier, and R. Neu, Conclusions about the use of tungsten in the divertor of ASDEX upgrade, J. Nucl. Mater., 266–269(1999), p. 207.

    Article  Google Scholar 

  13. N.M. Almousa and M. Bourham, Simulation of erosion and re-deposition of plasma facing materials under transient plasma instabilities, IEEE Trans. Plasma Sci., 48(2020), No. 6, p. 1512.

    Article  CAS  Google Scholar 

  14. M.I. Patino, D. Nishijima, M. Tokitani, D. Nagata, J.H. Yu, and R.P. Doerner, Material migration in W and Mo during bubble growth and fuzz formation, Nucl. Fusion, 61(2021), No. 7, art. No. 076001.

  15. F. Sefta, K.D. Hammond, N. Juslin, and B.D. Wirth, Tungsten surface evolution by helium bubble nucleation, growth and rupture, Nucl. Fusion, 53(2013), No. 7, art. No. 073015.

  16. P. Gumbsch, J. Riedle, A. Hartmaier, and H.F. Fischmeister, Controlling factors for the brittle-to-ductile transition in tungsten single crystals, Science, 282(1998), No. 5392, p. 1293.

    Article  CAS  Google Scholar 

  17. P. Gumbsch, Brittle fracture and the brittle-to-ductile transition of tungsten, J. Nucl. Mater., 323(2003), No. 2–3, p. 304.

    Article  CAS  Google Scholar 

  18. E.Y. Ivanov, C. Suryanarayana, and B.D. Bryskin, Synthesis of a nanocrystalline W–25 wt.% Re alloy by mechanical alloying, Mater. Sci. Eng. A, 251(1998), No. 1–2, p. 255.

    Article  Google Scholar 

  19. T. Hwang, A. Hasegawa, K. Tomura, et al., Effect of neutron irradiation on rhenium cluster formation in tungsten and tungsten-rhenium alloys, J. Nucl. Mater., 507(2018), p. 78.

    Article  CAS  Google Scholar 

  20. R. Mateus, M. Dias, J. Lopes, et al., Blistering of W-Ta composites at different irradiation energies, J. Nucl. Mater., 438(2013), p. S1032.

    Article  CAS  Google Scholar 

  21. K. Arshad, M.Y. Zhao, Y. Yuan, et al., Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys, J. Nucl. Mater., 455(2014), No. 1–3, p. 96.

    Article  CAS  Google Scholar 

  22. P.B. Kemp and R.M. German, Grain growth in liquid-phase-sintered W–Mo–Ni–Fe alloys, J. Less Common Met., 175(1991), No. 2, p. 353.

    Article  CAS  Google Scholar 

  23. C.L. Chen and Y. Zeng, Synthesis and characteristics of W–Ti alloy dispersed with Y2Ti2O7 oxides, Int. J. Refract. Met. Hard Mater., 56(2016), p. 104.

    Article  CAS  Google Scholar 

  24. O. El-Atwani, N. Li, M. Li, et al., Outstanding radiation resistance of tungsten-based high-entropy alloys, Sci. Adv., 5(2019), No. 3, art. No. eaav2002.

  25. O.A. Waseem and H.J. Ryu, Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications, Sci. Rep., 7(2017), No. 1, art. No. 1926.

  26. O.A. Waseem, J. Lee, H.M. Lee, and H.J. Ryu, The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials, Mater. Chem. Phys., 210(2018), p. 87.

    Article  CAS  Google Scholar 

  27. D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448.

    Article  CAS  Google Scholar 

  28. J.M. Torralba, P. Alvaredo, and A. García-Junceda, High-entropy alloys fabricated via powder metallurgy. A critical review, PowderMetall., 62(2019), No. 2, p. 84.

    CAS  Google Scholar 

  29. Y. Zhang, T.T. Zuo, Z. Tang, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1.

    Article  Google Scholar 

  30. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res., 33(2018), No. 19, p. 3092.

    Article  CAS  Google Scholar 

  31. W. Xiong, A.X.Y. Guo, S. Zhan, C.T. Liu, and S.C. Cao, Refractory high-entropy alloys: A focused review of preparation methods and properties, J. Mater. Sci. Technol., 142(2023), p. 196.

    Article  CAS  Google Scholar 

  32. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758.

    Article  CAS  Google Scholar 

  33. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Inter-metallics, 19(2011), No. 5, p. 698.

    CAS  Google Scholar 

  34. S. Alvi and F. Akhtar, High temperature tribology of Cu-MoTaWV high entropy alloy, Wear, 426.

  35. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process, Mater. Sci. Eng. A, 712(2018), p. 616.

    Article  CAS  Google Scholar 

  36. A.X. Lin-Vines, J.A. Wilson, A. Fraile, et al., Defect behaviour in the MoNbTaVW high entropy alloy (HEA), Results Mater., 15(2022), art. No. 100320.

  37. X.L. Yan, X. Zhang, F. Wang, et al., Fabrication of ODS austenitic steels and CoCrFeNi high-entropy alloys by spark plasma sintering for nuclear energy applications, JOM, 71(2019), No. 8, p. 2856.

    Article  CAS  Google Scholar 

  38. C.S. Bonifacio, T.B. Holland, and K. van Benthem, Evidence of surface cleaning during electric field assisted sintering, Scripta Mater., 69(2013), No. 11–12, p. 769.

    Article  CAS  Google Scholar 

  39. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R, 63(2009), No. 4–6, p. 127.

    Article  Google Scholar 

  40. X. Zhang, F. Wang, X.L. Yan, X.Z. Li, K. Hattar, and B. Cui, Nanostructured oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloys with high thermal stability, Adv. Eng. Mater., 23(2021), No. 9, art. No. 2100291.

  41. Y.F. Ye, Y.H. Zhang, Q.F. He, et al., Atomic-scale distorted lattice in chemically disordered equimolar complex alloys, Acta Mater., 150(2018), p. 182.

    Article  CAS  Google Scholar 

  42. Q.F. He and Y. Yang, On lattice distortion in high entropy alloys, Front. Mater., 5(2018), art. No. 42.

  43. L. Backman and E.J. Opila, Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials, J. Eur. Ceram. Soc., 39(2019), No. 5, p. 1796.

    Article  CAS  Google Scholar 

  44. A. Mittal, G.J. Albertsson, G.S. Gupta, S. Seetharaman, and S. Subramanian, Some thermodynamic aspects of the oxides of chromium, Metall. Mater. Trans. B, 45(2014), No. 2, p. 338.

    Article  CAS  Google Scholar 

  45. Z. Cao, S. Li, W. Xie, G. Du, and Z. Qiao, Critical evaluation and thermodynamic optimization of the V-O system, Calphad, 51(2015), p. 241.

    Article  CAS  Google Scholar 

  46. C.B. Hamilton and H.A. Wilhelm, The preparation of tantalum metal by the carbon reduction of tantalum pentoxide, [in] Proceedings of the Iowa Academy of Science, Iowa, 1961, p. 189.

  47. N. Senthilnathan, A.R. Annamalai, and G. Venkatachalam, Synthesis of tungsten through spark plasma and conventional sintering processes, Mater. TodayProc., 5(2018), No. 2, p. 7954.

    CAS  Google Scholar 

  48. O. El-Atwani, D.V. Quach, M. Efe, et al., Multimodal grain size distribution and high hardness in fine grained tungsten fabricated by spark plasma sintering, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5670.

    Article  CAS  Google Scholar 

  49. X.H. An, Structural hierarchy defeats alloy cracking, Science, 373(2021), No. 6557, p. 857.

    Article  CAS  Google Scholar 

  50. P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912.

    Article  CAS  Google Scholar 

  51. D.Q. Chen, G.Y. Zhou, Z.P. Liu, and S.T. Tu, Nanoindentation experimental study on mechanical properties of As-cast BNi-2 solder alloy, Procedia Eng., 130(2015), p. 652.

    Article  CAS  Google Scholar 

  52. R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, and K.V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro-and nanoindentation methods, Acta Mater., 125(2017), p. 58.

    Article  CAS  Google Scholar 

  53. L.M. Qian, M. Li, Z.R. Zhou, H. Yang, and X.Y. Shi, Comparison of nano-indentation hardness to microhardness, Surf. Coat. Technol., 195(2005), No. 2–3, p. 264.

    Article  CAS  Google Scholar 

  54. S. Alvi, D.M. Jarzabek, M.G. Kohan, et al., Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 21070.

    Article  CAS  Google Scholar 

  55. A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Microstructure and wear behavior of a refractory high entropy alloy, Int. J. Refract. Met. HardMater., 57(2016), p. 50.

    Article  CAS  Google Scholar 

  56. H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, and T.J. Li, Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys, Mater. Des., 109(2016), p. 539.

    Article  CAS  Google Scholar 

  57. Q.Y. Li, H. Zhang, D.C. Li, et al., WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition, Materials, 12(2019), No. 3, art. No. 533.

  58. Z. Wang, Y. Yuan, K. Arshad, et al., Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys, Fusion Eng. Des., 125(2017), p. 496.

    Article  CAS  Google Scholar 

  59. T. Gräning, M. Klimenkov, M. Rieth, C. Heintze, and A. Möslang, Long-term stability of the microstructure of austenitic ODS steel rods produced with a carbon-containing process control agent, J. Nucl. Mater., 523(2019), p. 111.

    Article  Google Scholar 

  60. J. Svoboda, P. Boril, J. Holzer, et al., Substantial improvement of high temperature strength of new-generation nano-oxide-strengthened alloys by addition of metallic yttrium, Materials, 15(2022), No. 2, art. No. 504.

  61. S. Ukai, S. Ohtsuka, T. Kaito, et al., High-temperature strength characterization of advanced 9Cr–ODS ferritic steels, Mater. Sci. Eng. A, 510–511(2009), p. 115.

    Article  Google Scholar 

  62. L. Fave, M.A. Pouchon, M. Döbeli, M. Schulte-Borchers, and A. Kimura, Helium ion irradiation induced swelling and hardening in commercial and experimental ODS steels, J. Nucl. Mater., 445(2014), No. 1–3, p. 235.

    Article  CAS  Google Scholar 

  63. C.Y. Lu, Z. Lu, X. Wang, et al., Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation, Sci. Rep., 7(2017), art. No. 40343.

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1762190. The research was performed in part in the Nebraska Nano-scale Facility: National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience (and/or NERCF), which are supported by the National Science Foundation under Award ECCS: 2025298, and the Nebraska Research Initiative. This work was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of a Nuclear Science User Facilities experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Cui.

Ethics declarations

Bai Cui is an editorial board member for this journal and was not involved in the editorial review or the decision to publish this article. The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, Y., Zhang, X., Wang, F. et al. Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications. Int J Miner Metall Mater 31, 146–154 (2024). https://doi.org/10.1007/s12613-023-2711-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2711-9

Keywords

Navigation