Skip to main content
Log in

10XSBF Bone-Like Hydroxyapatite Coating of Ti–6Al–4V with Microwave Irradiation and its Antibacterial Properties

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The surfaces of titanium (Ti–6Al–4V) implants, which are widely preferred as implant material in medicine and dentistry, are biomimetically coated with nanohydroxyapatite (nHAp) in simulated body fluid (10XSBF) with microwave-assisted 10-f time concentration solution. A second layer was formed with different amounts of non-toxic AgNO3 to impart antibacterial properties to the implant materials coated with nHAp. In comparison of uncoated implants with nHAp and Ag-coated Ti–6Al–4V implants, surface morphologies were evaluated by SEM analysis, phase grade and structure were evaluated by XRD, and surface properties were evaluated by XPS, AFM and mapping analysis. It was observed that the surface changed after Ag coating and had the appearance of cauliflower. With this study, an amorphous surface was created for Ti-6-Al-4V implants in a short time in the domestic microwave. In addition, their surfaces were coated with silver. Implants with antibacterial properties showed resistance to bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hollinger J O, Winn S, Bonadio J, Tissue Eng 6 (2000) 341.

    Article  CAS  Google Scholar 

  2. Barrere F, van Blitterswijk C A, de Groot K, Layrolle P, Biomaterials 23 (2002) 1921.

    Article  CAS  Google Scholar 

  3. Nordström E G, Sánchez Muñoz O L, Bio-Med Mater Eng 11 (2001) 221.

    Google Scholar 

  4. L. Jonasova, F.A. Müller, A. Helebrant, J. Strnad, P. Greil, Biomimetic apatite formation on chemically treated titanium, Biomaterials 25 (7–8) (2004) 1187–1194.

    Article  CAS  Google Scholar 

  5. Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y Y, Kaufman M J, Douglas E P, Gower L B, Mater Sci Eng 58 (2007) 77.

    Article  Google Scholar 

  6. Tas A C, Biomaterials 21 (2000) 1429.

    Article  CAS  Google Scholar 

  7. Mavrogenis A F, Dimitriou R, Parvizi J, Babis G C, J Musculoskelet Neuronal Interact 9 (2009) 61.

    CAS  Google Scholar 

  8. Roeder R K, Converse G L, Kane R J, Yue W, JOM 60 (2008) 38.

    Article  CAS  Google Scholar 

  9. Thamaraiselvi T V, Rajeswari S, Trends Biomater Artif Organs 18 (2004) 9.

    Google Scholar 

  10. Mavis B, Demirtaş T T, Gümüşderelioğlu M, Gündüz G, Çolak Ü, Acta Biomaterialia 5 (2009) 3098.

    Article  CAS  Google Scholar 

  11. Kalia P, Vizcay-Barrena G, Fan J P, Warley A, Di Silvio L, Huang J, J R Soc Interface 11 (2014) 1.

    Article  Google Scholar 

  12. Leena M, Rana D, Webster T J, Ramalingam M, Mater Chem Phys 180 (2016) 1.

    Article  Google Scholar 

  13. Cao J M, Feng J, Deng S G, Chang X, Wang J, Liu J S, Lu P, Lu H X, Zheng M B, Zhang F, Tao J, J Mater Sci 40 (2005) 6311.

    Article  CAS  Google Scholar 

  14. Sinnwell S, Ritter H, Aus J Chem 60 (2007) 729.

    Article  CAS  Google Scholar 

  15. Demirtaş T T, Kaynak G, Gümüşderelioğlu M, Mater Sci Eng C 49 (2015) 713.

    Article  Google Scholar 

  16. Ren Y, Zhou H, Nabiyouni M, Bhaduri S B, Mater Sci Eng C 49 (2015) 364.

    Article  CAS  Google Scholar 

  17. Tığlı Aydın R S, Uyanık S, J Mater Res 34 (2019) 1879.

    Article  Google Scholar 

  18. Arres M, Salama M, Rechena D, Paradiso P, Reis L, Alves M M, do Rego A M B, Carmezim M J, Vaz M F, Deus A M, Santos C, J Mech Behav Biomed Mater 108 (2020) 103794.

    Article  CAS  Google Scholar 

  19. Hardes J, Streitburger A, Ahrens H, Nusselt T, Gebert C, Winkelmann W, Gosheger G, Sarcoma (2007).

  20. Sobczak-Kupiec A, Kijkowska R, Malina D, J Am Ceram Soc 99 (2016) 3129.

    Article  CAS  Google Scholar 

  21. Esteban-Tejeda L, Cabal B, Malpartida F, López-Píriz R, Torrecillas R, Saiz E E, Moya J S, J Eur Ceram Soc 32 (2012) 2723.

    Article  CAS  Google Scholar 

  22. Bee S L, Bustami Y, Ul-Hamid A, & Hamid Z A, Mater Chem Phys 277 (2022) 125455.

    Article  CAS  Google Scholar 

  23. Rajendran A, Barik R C, Natarajan D, Kiran M S, Pattanayak D K, Ceram Int 40 (2014) 10831.

    Article  CAS  Google Scholar 

  24. Battistoni C, Casaletto M P, Ingo G M, Kaciulis G S, Mattogno G, Pandolfi G L, Surf Interface Anal 29 (2000) 773.

    Article  CAS  Google Scholar 

  25. Hsieh M F, Perng L H, Chin T S, Mater Chem Phys 74 (2002) 245.

    Article  CAS  Google Scholar 

  26. Hamouda H I, Abdel-Ghafar H M, Mahmoud M H H, J Environ Chem Eng 9 (2) (2021) 105034.

    Article  CAS  Google Scholar 

  27. Li M, Wei Y, Ma B, Hu Y, Li D, & Cui X, J Bion Eng 19 (2022) 507.

    Article  Google Scholar 

  28. Rajan S T, Subramanian B, Arockiarajan A, Ceram Int 48 (2021) 4377.

    Article  Google Scholar 

  29. Lenis J A, Bejarano G, Rico P, Gómez Ribelles J L, Bolivar F J, Surf Coat Technol 377 (2019) 124856.

    Article  CAS  Google Scholar 

  30. Mina-Aponzá S, Castro-Narváez S P, Caicedo-Bejarano L D, & Bermeo-Acosta F, Molecules, 26 (2021) 4813.

    Article  Google Scholar 

  31. Geng Z, Wang R, Zhuo X, Li Z, Huang Y, Ma L, Cui Z, Zhu S, Liang Y, Liu Y, Bao H, Li X, Huo Q, Liu Z, Yang X, Mater Sci Eng C 71 (2017) 852.

    Article  CAS  Google Scholar 

  32. Choi S H, Jang Y S, Jang J H, Bae T S, Lee S J, Lee M H, J Appl Biomater Funct Mater 17 (2019) 228080001984706.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Projects Coordination Unit of Kahramanmaras Sutcu Imam University (Project No: 2019 2 / 22YLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashabil Aygan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 133 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namlı, E., Dolaz, M. & Aygan, A. 10XSBF Bone-Like Hydroxyapatite Coating of Ti–6Al–4V with Microwave Irradiation and its Antibacterial Properties. Trans Indian Inst Met 76, 1281–1290 (2023). https://doi.org/10.1007/s12666-022-02815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02815-y

Keywords

Navigation