Skip to main content
Log in

Influence of Gd Concentration on the Structural, Optical, and Electrical Properties of Gd/Al Codoped TiO2Nanoparticles by Precipitation Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Al/Gd-codoped Gd/Codoped Gd/Codoped Gd Titanium oxide (TiO2) nanoparticle ceramics were synthesized using a thermo-precipitation technique and a specific concentration (1% Al). The concentration of Gd ions in sample S1 was 3% and 6%, respectively. The crystalline structure was investigated using the X-ray diffraction (XRD) technique, and the optical properties were investigated using the diffuse reflection spectroscopy (DRS). The dielectric properties' frequency dependence was studied. The nanostructural properties were identified and investigated. The variation of the bandgap with Gd doping level in comparison to the pristine anatase structure was investigated and explained based on the experimental results. It was determined that Al-ions doping into the substitutional solid solution (SSS) formed the Nano Crystallites (NCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rahimi N, Pax R A, Mac E, Gray A, Prog Solid State Chem 44 (2016) 86.

  2. Reyes-Coronado D, Rodrıguez-Gattorno G, Espinosa-Pesqueira M E, Cab C, de Coss R, Oskam G, Nanotechnology 19 (2008) 145605.

  3. Balhamri A, Deraoui A, Bahou Y, Rattal M, Mouhsen Az, Harmouchi M, Tabyaoui A, Oualim E M, Int J Thin Fil Sci Tec 4 (2015) 205.

  4. Dong J, Han J, Liu Y, Nakajima A, Matsushita S, Wei S, and Gao W, Appl Mater Inter 6 (2018) 1385.

  5. Bavykin D V, Parmon V N, Lapkin A A, and Walsh F C, J Mater Chem 14 (2004) 3370.

  6. Zhuang H -F, Lin C -J, Lai Y -K, Sun L, and Li J, Environ Sci Technol 41 (2007) 4735.

  7. Yoshitake M, and Kazumi K, J Cer Soc Japan 117 (2009) 373.

  8. Gupta S M, and Tripathi M, Chin Sci Bull 56 (2011) 1639.

  9. Hu W, Liu Y, Withers R L, Frankcombe T J, Norén L, Snashall A, Kitchin M, Smith P, Gong B, Chen H, Schiemer J, Brink F, and Wong-Leung J, Nat Mater 12 (2013) 821.

  10. Elfimov I S, Yunoki S, Sawatzky G A, Phys Rev Lett 89 (2002) 216403.

  11. Ryan L, A B.Sc. thesis, Oregon State University, 5 (2018)

  12. Lin Y H, Li M, Nan C W, Li J, Wu J, He J, Appl Phys Lett 89 (2006) 032907.

  13. Nachaithong T, Tuichai W, Moontragoon P, Chanlek N, and Thongbai P, Cer Int 44 (2018) S186.

  14. Shannon R D, Acta Crystallogr A 32 (1976) 751.

  15. Jing L, Sun X, Xin B, Wang B, Cai W, and Fu H, J Solid State Chem 177 (2004) 3375

  16. Tuichaia W, Danwittayakulb S, Srepusharawoota P, Thongbaia P, and Maensiri S, Cer Int 43 (2017) S265.

  17. Fana J, Lengb S, Caoa Zh, Hea W, Gaoa Y, Liua J, and Li G, Cer Int 45 (2019) 1001.

  18. Yanga C, Weia X, Hao J, Cer Int 44 (2018) 12395.

  19. Thongyonga N, Tuichaia W, Chanlekb N, and Thongbai P, Cer Int 43 (2017) 15466.

  20. Tuichai W, Srepusharawoot P, Swatsitang E, Danwittayakul S, and Thongbai P, Microelectron Eng 146 (2015) 32.

  21. Shanming K, Tao L, Mao Y, Peng L, Wenxiang T, Xierong Z, Lang C, and Haitao H, Sci Rep 7, (2017) 10144.

  22. Dong W, Hu W, Berlie A, Lau K, Chen H, Withers R L, and Liu Y, ACS Appl Mater Interfaces 7 (2015) 25321

  23. Wang X W, Zhang B H, Sun L Y, Qiao W N, Hao Y D, Hu Y C, and Wang X E, J Alloy Compd 745 (2018) 856.

  24. Dakhel A A, Appl Phys A 126 (2020) 41.

  25. McCusker L B, Von Dreele R B, Cox D E, Louer D, and Scardi P, J Appl Cryst 32 (1999) 36.

  26. Zhang X, Chen W-F, Bahmanrokh G, Kumar V, Ho N, Koshy P, and Sorrell C C, Nano-Struct & Nano-objects 24 (2020) 100557.

  27. Fang L, Ling-xiao G, Mei-li D, Ji-jun F, and Ming-ming Y, Cer Int 39 (2013) 7395.

  28. Kayani Z N, Intizar T, Riaz S, and Naseem S, Mater Chem Phys 267 (2021) 124659.

  29. Dakhel J A A, Australian Cer Soc 56 (2020) 1291.

  30. Anyaegbunam F N C and Augustine C, Digest J Nanomater Biostruct 13 (2018) 847.

  31. Pankove J I, Opt Process Semiconduct, Dover, NY (1975), P.36

  32. Wu M, Alivov Y I, and Morkoc H, J Mater Sci:Mater Electron 19 (2008) 915.

  33. Yang W Z, Fu M S, Liu X Q, Zhu H Y, and Chen X M, Ceram Int 37 (2011) 2747.

  34. Joseph D P, Saravanan M, Muthuraaman B, Renugambal P, Sambasivam S, Raja S P, Maruthamuthu P, and Venkateswaran C, Nanotechnology 19 (2008) 485707.

  35. Elliott S R, Adv Phys 36 (1987) 135.

  36. Pilet J C and Leraon A, Adv Molecular Relaxat Interact Process, 14 (1979) 235.

  37. Hill R M and Jonscher K, J Non-Cryst Solids 32 (1979) 53.

  38. Yakuphanoglua F, Aydogdua Y, Schatzschneiderb U and Rentschler E, Physica B 334 (2003) 443.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Ashoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashoor, H.E., Dakhel, A.A. Influence of Gd Concentration on the Structural, Optical, and Electrical Properties of Gd/Al Codoped TiO2Nanoparticles by Precipitation Method. Trans Indian Inst Met 76, 1685–1690 (2023). https://doi.org/10.1007/s12666-022-02744-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02744-w

Keywords

Navigation