Skip to main content
Log in

Stellite 6 Cladding on AISI Type 316L Stainless Steel: Microstructure, Nanohardness and Corrosion Resistance

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

AISI type 316L stainless steel (SS) is used in the manufacturing of components that works in severe aggressive environments. These environments include petrochemical equipments, heat exchangers, power plants, waste water treatments, etc. After prolonged exposure in these environments, corrosion will initiate in these components. The aim of this study is to strengthen the anti-corrosion property of AISI type 316L SS by coating the Stellite 6 alloy via laser cladding. The cladded microstructure was analysed by the optical and FE-SEM micrographs along with the EDS spectra. The nanoindentation was made in the substrate and cladded region to compare the hardness property. In a three-electrode setup, the anti-corrosion behaviour of both AISI type 316L SS and Stellite 6 clad samples was evaluated at 0, 42 and 70 h, followed by the investigation of the corroded morphology and surface roughness (Ra). The results showed that the cladded region contains the Co-rich dendritic structure along with Cr-rich carbides decorated in the dendritic boundaries. These Cr-rich carbides were responsible for enhancing the hardness in the cladded layer. The corrosion test proved the existence of better passive (oxide) film on the cladded samples that provided significant resistance towards corrosion than the AISI type 316L SS samples. Further, the EIS analysis confirmed that the laser cladding of Stellite 6 seems to provide greater Rp values than the AISI type 316L SS. Notably, 70 h clad sample exhibited maximum corrosion resistance in terms of EIS, Tafel and surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The experimental datasets obtained from this research work and then the analysed results during the current study are available from the corresponding author on reasonable request.

References

  1. Painkra T K, Naik K S, Nishad R K, Sen P K, and Bohidar S K, Int J Innov Res Sci Technol 1 (2014) 93.

    Google Scholar 

  2. Talha M, Behera C K, and Sinha O P, Mater Sci Eng C 33 (2013) 3563.

    Article  CAS  Google Scholar 

  3. Voronenko B I, Metal Sci Heat Treat 39 (1997) 428.

    Article  CAS  Google Scholar 

  4. Baddoo N R J Constr Steel Res 64 (2008) 1199.

  5. Shih C C, Shih C M, Su Y Y, Su L H, Chang M S, and Lin S J, Corros Sci 46 (2004) 427.

    Article  CAS  Google Scholar 

  6. Matula M, Hyspecka L, Svoboda M, Vodarek V, Dagbert C, Galland J, Stonawska Z, and Tuma L, Materials Charact 46 (2001) 203.

    Article  CAS  Google Scholar 

  7. Cai B, Liu Y, Tian X, Wang F, Li H, and Ji R, Corros Sci 52 (2010) 3235.

    Article  CAS  Google Scholar 

  8. Hägg M S, Localised Corrosion and Atmospheric Corrosion of Stainless Steels (Doctoral dissertation, KTH).

  9. Dearnley P A, and Aldrich-Smith G, Wear 256 (2004) 491.

    Article  CAS  Google Scholar 

  10. Lee S J, and Lai J J, J Mater Process Technol 140 (2003) 206.

    Article  CAS  Google Scholar 

  11. Zhu L, Xue P, Lan Q, Meng G, Ren Y, Yang Z, Xu P, and Liu Z, Opt Laser Technol 138 (2021) 106915.

    Article  CAS  Google Scholar 

  12. Jeyaprakash N, Yang C H, and Tseng S P, Int J Adv Manuf Technol 106 (2020) 2347.

    Article  Google Scholar 

  13. Jeyaprakash N, and Yang C H, Mater Manuf Process 35 (2020) 1383.

    Article  CAS  Google Scholar 

  14. Birol Y, Wear 269 (2010) 664.

    Article  CAS  Google Scholar 

  15. Romo S A, Santa J F, Giraldo J E, and Toro A, Tribol Int 47 (2012) 16.

    Article  CAS  Google Scholar 

  16. Ferozhkhan M M, Kumar K G, and Ravibharath R, Arab J Sci Eng 42 (2017) 2067.

    Article  CAS  Google Scholar 

  17. Mirshekari G R, Daee S, Bonabi S F, Tavakoli M R, Shafyei A, and Safaei M, Surf Interfaces 9 (2017) 79.

    Article  CAS  Google Scholar 

  18. Shahroozi A, Afsari A, Khakan B, and Khalifeh A R, Surf Coat Technol 350 (2018) 648.

    Article  CAS  Google Scholar 

  19. Chi H, Pans M A, Bai M, Sun C, Hussain T, Sun W, Yao Y, Lyu J, and Liu H, Fuel 288 (2021)119607.

    Article  CAS  Google Scholar 

  20. Sassatelli P, Bolelli G, Gualtieri M L, Heinonen E, Honkanen M, Lusvarghi L, Manfredini T, Rigon R, and Vippola M, Surf Coat Technol 338 (2018) 45.

    Article  CAS  Google Scholar 

  21. Brownlie F, Anene C, Hodgkiess T, Pearson A, and Galloway A M, Wear 404 (2018) 71.

    Article  Google Scholar 

  22. Ding Y P, Liu R, Wang L, Li J H, and Yao J H, Prot Metals Phys Chem Surf 56 (2020) 392.

    Article  CAS  Google Scholar 

  23. Wu T, Shi W, Xie L, Gong M, Huang J, Xie Y, and He K, Materials 15 (2022) 3952.

    Article  CAS  Google Scholar 

  24. Sun S, Brandt M, Harris J, and Durandet Y, Surf Coat Technol 201 (2006) 998.

    Article  CAS  Google Scholar 

  25. Liu Y, Ding Y, Yang L, Sun R, Zhang T, and Yang X, J Manuf Process 66 (2021) 341.

    Article  Google Scholar 

  26. Singh S, Goyal D K, Kumar P, and Bansal A, Mater Res Exp 7 (2020) 012007.

    Article  CAS  Google Scholar 

  27. Jeyaprakash N, Yang C H, and Sivasankaran S, Mater Manuf Process 35 (2020) 142.

    Article  CAS  Google Scholar 

  28. Natarajan J, Yang C H, and Karuppasamy S S, Materials 14 (2021) 6183.

    Article  CAS  Google Scholar 

  29. Luo F, Cockburn A, Lupoi R, Sparkes M, and O'Neill W, Surf Coat Technol 212 (2012) 119.

    Article  CAS  Google Scholar 

  30. Shin J C, Doh J M, Yoon J K, Lee D Y, and Kim J S, Surf Coat Technol 166 (2003) 117.

    Article  CAS  Google Scholar 

  31. Jeshvaghani R A, Shamanian M, and Jaberzadeh M, Mater Des 32 (2011) 2028.

    Article  Google Scholar 

  32. Singh R, Kumar D, Mishra S K, and Tiwari S K, Surf Coat Technol 251 (2014) 87.

    Article  CAS  Google Scholar 

  33. Gholipour A, Shamanian M, and Ashrafizadeh F, J Alloys Compnd 509 (2011) 4905.

    Article  CAS  Google Scholar 

  34. Li Z, Cui Y, Wang J, Liu C, Wang J, Xu T, Lu T, Zhang H, Lu J, Ma S, and Fan H, Metals 9 (2019) 474.

    Article  CAS  Google Scholar 

  35. Motallebzadeh A, Atar E, and Cimenoglu H, Manuf Sci Technol 3 (2015) 224.

    Google Scholar 

  36. Karuppasamy S S, Jeyaprakash N, and Yang CH, Arab J Sci Eng 6 (2022) 1.

    Google Scholar 

  37. Zhu Y Z, Yin Z M, and Hao T E, Trans Nonferrous Metals Soc China 17 (1) 35.

  38. Kosaka T, Suzuki S, Inoue H, Saito M, Waseda Y, and Matsubara E, Appl Surf Sci 103 (1996) 55.

    Article  CAS  Google Scholar 

  39. Li K, Li Y, Huang X, Gibson D, Zheng Y, Liu J, Sun L, and Fu Y Q, Appl Surf Sci 414 (2017) 63.

    Article  CAS  Google Scholar 

  40. Malayoglu U, Neville A, Beamson G, Mater Sci Eng A 393 (2005) 91.

    Article  Google Scholar 

  41. Wang L, and Li D Y. Wear 255 (2003) 535.

    Article  CAS  Google Scholar 

  42. Jeyaprakash N, Yang C H, and Karuppasamy S S. Surf Rev Lett (2022).

  43. Hong M S, Park Y, Kim J G, and Kim K, Effect of Incorporating MoS2 in Organic Coatings on the Corrosion Resistance of 316L Stainless Steel in a 3.5% NaCl Solution. InCORROSION 2019 OnePetro (2019).

  44. Kamburova K, Boshkova N, Tabakova N, Boshkov N, and Radeva T, Colloids Surf A Physicochem Eng Asp 592 (2020) 124546

    Article  CAS  Google Scholar 

  45. Hady H, Hammood A S, and Thair L, Mater Today Proc 42 (2021) 2326.

    Article  CAS  Google Scholar 

  46. Toloei A, Stoilov V, and Northwood D, The Relationship Between Surface Roughness and Corrosion. InASME International Mechanical Engineering Congress and Exposition 2013 Nov 15 (Vol. 56192, p. V02BT02A054). American Society of Mechanical Engineers.

Download references

Acknowledgements

The authors like to acknowledge the Ministry of Science and Technology, Taiwan, for providing the funds for the successful completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jeyaprakash.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyaprakash, N., Yang, CH., Karuppasamy, S.S. et al. Stellite 6 Cladding on AISI Type 316L Stainless Steel: Microstructure, Nanohardness and Corrosion Resistance. Trans Indian Inst Met 76, 491–503 (2023). https://doi.org/10.1007/s12666-022-02731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02731-1

Keywords

Navigation