Skip to main content
Log in

Investigation on Loss on Ignition to Study the Effect of Iron Ore Mineralogy in Green Pellet Growth Kinetics

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study corroborates that the iron ore mineralogy has significant effects on green pellet growth and its properties by both experimental and mathematical arguments. In this context, three iron ore samples with different loss on ignition (LOI): 2.64, 4.85 and 9.19 wt.% were taken. The mineralogical differences were investigated through X-ray diffraction, thermogravimetric analysis, and heating cycle studies. The pellet properties; green compressive strength, drop, and moisture were evaluated for 8–16 mm green pellets. An empirical correlation was developed to predict the average green pellet size (DAvg.) in correlation with disc rpm (RD), inclination (ID), retention time (T), LOI (L), and feed size (d50) of the ore with root-mean-square deviation of 0.290. The effect of mineralogy was quantified by modifying the existing self-preserving size distribution model using DAvg. and the operating variables with R2 of 0.941. The comparison between observed and predicted DAvg was found with R2 of 0.985.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sastry K V S, and Fuerstenau D W, Powder Technol. 7 (1973) 97.

    Article  Google Scholar 

  2. Georgalli G A, and Reuter M A, Powder Technol. 173 (2007) 189.

    Article  CAS  Google Scholar 

  3. Prusti P, Barik K, Dash N, Biswal S K, and Meikap B C, Powder Technol. 379 (2021) 154.

    Article  CAS  Google Scholar 

  4. Eisele T C, and Kawatra S K, Min. Proc. Ext. Met. Rev. 24 (2003) 1.

    Article  CAS  Google Scholar 

  5. Cooke S R B, and Ban T E, Transactions AIME 193 (1952) 1053.

    Google Scholar 

  6. Newitt D M, and Conway-Jones J M, Trans. Inst. Chem. Eng. 36 (1958) 422.

    Google Scholar 

  7. Capes C E, and Danckwerts P V, Trans. Inst. Chem. Eng. 43 (1965) 125.

    Google Scholar 

  8. Kapur P C, Chem. Eng. Sci. 27 (1972) 1863.

    Article  CAS  Google Scholar 

  9. Sastry K V S, Int. J. Miner. Process. 2 (1975) 187.

    Article  Google Scholar 

  10. Friedlander S K, and Wang C S, J. Colloid Interface Sci. 22 (1966) 126.

    Article  CAS  Google Scholar 

  11. Friedlander S K, Proc. 1st Natl. Conf. on Aerosols, Liblice, 1962, Acad. Sci, Czech, (1964).

  12. Plitt L R, CIM Bull. 69 (1976) 114.

    Google Scholar 

  13. Venugopal R, PhD Thesis, ISMU Dhanbad, (1986).

  14. Thella J S, and Venugopal R, Powder Technol. 211 (2011) 54.

    Article  CAS  Google Scholar 

  15. Kapur P C, and Fuerstenau D W, Ind. Eng. Chem. Process Des. Develop. 5 (1966) 5.

    Article  CAS  Google Scholar 

  16. Sastry K V S, and Fuerstenau D W, Ind. Eng. Chem. Fundamen. 9 (1970) 145.

    Article  CAS  Google Scholar 

  17. Ramabadhran T E, Chem. Eng. Sci. 30 (1975) 1027.

    Article  Google Scholar 

  18. Nadeem M, Banka H, and Venugopal R, Arab J. Sci. Eng. 41 (2016) 1053.

    Google Scholar 

  19. Patra S, and Venugopal R, Material Sci. & Eng. 2 (2018) 287.

    Google Scholar 

  20. Biswal S K, J. Sustain. Planet 1 (2010) 46.

    Google Scholar 

  21. Biswal S K, Sahu S N, and Prusti P, National Conference on ARMMW-2016, Bhubaneswar, (2019) 119.

  22. Beuria P C, Biswal S K, Mishra B K, and Roy G G, Int. J. Min. Sci. Techno. 27 (2017) 1031.

    Article  CAS  Google Scholar 

  23. Prusti P, Nayak B K, and Biswal S K, Trans. Indian Inst. Met. 70 (2017) 453.

    Article  CAS  Google Scholar 

  24. Prusti P, and Barik K, Materials Today: Proceedings 33 (2020) 5373.

    Article  CAS  Google Scholar 

  25. Lima R M F, and Abreau F P V F, J. Mater. Res. Technol. 9 (2020) 2021.

    Article  CAS  Google Scholar 

  26. Umadevi T, Sridhara K, Rameshwar S, and Srinidhi R, T. Indian I. Metals 72 (2019) 1.

    Article  Google Scholar 

  27. Pal J, Ghorai S, Agarwal S, Nandi B, Chakraborty T, Das G, and Prakash S, Min. Proc. Ext. Met. Rev. 36 (2015) 83.

    Article  CAS  Google Scholar 

  28. Lynch A J, and Rao T C, Proceedings of 11th Int. Mineral Processing Congress, Cagliary, (1975).

  29. Gottfried B S, and Jacobsen P S, USBM RI 8238, (1977) 8238.

  30. Pillai K J, Spottiswood D J, Bull W R, and Kelly E G, Proceedings of IFAC Symposium on automation for mineral resource development, Brisbane, Australia, (1985) 227.

  31. Rao T C, Vanangamudi M, and Rao K H, Int. J. Miner. Process. 9 (1982) 235.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallishree Prusti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, K., Prusti, P., Meikap, B.C. et al. Investigation on Loss on Ignition to Study the Effect of Iron Ore Mineralogy in Green Pellet Growth Kinetics. Trans Indian Inst Met 75, 481–493 (2022). https://doi.org/10.1007/s12666-021-02449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02449-6

Keywords

Navigation