Skip to main content
Log in

Structural and Optical Properties of V2O5 Thin Films Grown by PLD Technique

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

α -vanadium pentoxide (α-V2O5) thin films with the orthorhombic crystal structure were successfully grown on Si-substrates using pulsed laser deposition (PLD) technique with varying substrate temperatures. XRD spectra confirm the formation of orthorhombic V2O5 phase which is evident as the strongest peak at ~ 20.38°. The films are apparently crystalline in nature, and the average crystallite size ranges between ~ 200 nm–~ 400 as obtained from Scherrer’s equation. FESEM image shows the films as compact nanostructured type displaying a globular (at 500 °C) or sheath like morphology (at 600 °C and 700 °C). AFM study shows that the average surface roughness of V2O5 films increases with increasing substrate temperature. UV–vis spectroscopy shows that the fundamental absorption edge has shifted to the red side (higher wavelength) with increasing temperature. Optical band gap values (Eg) decrease with increasing deposition temperature (at 700 °C, Eg ~ 2.08 eV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li B, Xu Y, Rong G, Jing M, and Xie Y, Nanotechnology 17 (2006) 2560.

    Article  CAS  Google Scholar 

  2. Legrouri A, Baird T, and Fryer, J Catal 140 (1993) 173.

    Article  CAS  Google Scholar 

  3. Talledo A, Valdivia H, and Benndorf C, J Vac Sci Technol A Vac Surf Films 21 (2003) 1494.

    Article  CAS  Google Scholar 

  4. Fei H, Ding X, Wei M, and Wei K, Solid State Sci 13 (2011) 2049.

    Article  CAS  Google Scholar 

  5. Balasubramanian V, Chandrasekaran J, Manikandan V, Khac Le T, Marnadu R, and Vivek P, J Solid State Chem 301 (2021) 122289.

    Article  Google Scholar 

  6. Abd-Alghafour N M, Ahmed N M, Hassan Z, and Mohammad S M, AIP Conf Proc 090010 (7) (2016) 1756.

    Google Scholar 

  7. Kang M, Jung J, Lee S Y, Ryu J W, and Kim S W, Thermochim Acta 576 (2014) 71.

    Article  CAS  Google Scholar 

  8. Ramana C V, Smith R J, and Hussain O M, Phys Status Solidi 199 (2003) R4.

    Article  CAS  Google Scholar 

  9. Ramana C V, Hussain O M, Naidu B S, and Reddy P J, Thin Solid Films 305 (1997) 219.

    Article  CAS  Google Scholar 

  10. Fieldhouse N, Pursel S M, Carey R, Horn M W, and Bharadwaja S S N, J Vac Sci Technol A 27 (2009) 951.

    Article  CAS  Google Scholar 

  11. Prociow E, Zielinski M, Sieradzka K, Domaradzki J, and Kaczmarek D, Radioengineering 20 (2011) 204.

    Google Scholar 

  12. Saad Akl A A, Appl Surf Sci 253 (2007) 7094.

    Article  Google Scholar 

  13. Yang X, Cai C, Zhou S, Liu H, and Liu W, Chin Opt Lett 8 (2010) 137.

    Article  Google Scholar 

  14. Basu R, and Dhara S, J Appl Phys 123 (2018) 161550.

    Article  Google Scholar 

  15. Basu R, Prasad A K, Dhara S, and Das A, J Phys Chem C 120 (2016) 26539.

    Article  CAS  Google Scholar 

  16. Basu R, Magudapathy P, Sardar M, and Pandian R, J Phys D: Appl Phys 50 (2017) 465602.

    Article  Google Scholar 

  17. Basu R, Patsha A, Chandra S, Amirthapandian S, Gururaj R K, Dasgupta A, and Dhara S, J Phys Chem C 123 (2019) 11189.

    Article  CAS  Google Scholar 

  18. Basu R, Ghosh S, Bera S, Das A, and Dhara S, Sci Rep 9 (2019) 4621.

    Article  Google Scholar 

  19. Basu R, Reshma P R, Prasad A K, and Dhara S, Mater Chem Phys 248 (2020) 122901.

    Article  CAS  Google Scholar 

  20. Basu R, Srihari V, Sardar M, Srivastava S K, Bera S, and Dhara S, Sci Rep 10 (2020) 1977.

    Article  CAS  Google Scholar 

  21. Meng L J, Silva R A, Cui H N, Teizeira V, Dos Santos M P, and Xu Z, Thin Solid Films 515 (2006) 195.

    Article  CAS  Google Scholar 

  22. Chrisey D G, and Hubler G K, Pulsed Laser Deposition of Thin Films, Wiley Publications, New York (1994).

    Google Scholar 

  23. Khmissi H, Mahmoud S A, and Ahmed Akl A, Optik (Stuttgart) 227 (2021) 165979.

    Article  CAS  Google Scholar 

  24. Enjabert R, and Galy J, Acta Crystallogr C 42 (1986) 1467.

    Article  Google Scholar 

  25. Vijay V S, Varghese R, Sakunthala A, Rajesh S, and Vidhya B, Vacuum 187 (2021) 110097.

    Article  CAS  Google Scholar 

  26. Cullity B D, Elements of X-Ray Diffraction, second ed., Addison Wesley, London, (1978).

    Google Scholar 

  27. Ramana C V, Smith R J, Hussain O M, and Julien C M J, J Vac Sci Technol A 22 (2004) 2453.

    Article  CAS  Google Scholar 

  28. Ramana C V, Hussain O M, Pinto R, and Julien C M, Appl Surf Sci 207 (2003) 135.

    Article  CAS  Google Scholar 

  29. Madhuri K V, and Babu M B, Mater Today: Proc 19 (2019) 2693.

    CAS  Google Scholar 

  30. Margoni M M, Mathuri S, Ramamurthi K, Babu R, and Sethuraman K, Appl Surf Sci 418 (2017) 280.

    Article  CAS  Google Scholar 

  31. Gandasiri R, Sreelatha C J, Nagaraju P, and Vijayakumar Y, Physica B: Condens Matter 572 (2019) 220.

    Article  CAS  Google Scholar 

  32. Subbarayudu S, Madhavi V, and Uthanna S, Int J Mater Sci 4 (2014) 78.

    Article  Google Scholar 

  33. Tauc J, Optical Properties of Amorphous Semiconductors, Amorphous and Liquid Semiconductors, Springer, New York (1974) p 159.

    Book  Google Scholar 

  34. Ramana C V, Smith R J, Hussain O M, Chusuei C C, and Julien C M, Thin Films Chem Mater 17 (2005) 1213.

    CAS  Google Scholar 

  35. Raj D V, Ponpandian N, Mangalaraj D, and Viswanathan C, Mater Sci Semicond Process 16 (2013) 256.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Researchers Supporting Project number (RSP-2021/373), King Saud University, Riyadh, Saudi Arabia.

Funding

This research is funded by Researchers Supporting Project number (RSP-2021/373), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asiful H. Seikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seikh, A.H. Structural and Optical Properties of V2O5 Thin Films Grown by PLD Technique. Trans Indian Inst Met 75, 193–198 (2022). https://doi.org/10.1007/s12666-021-02415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02415-2

Keywords

Navigation