Skip to main content
Log in

The Effect of Zn Incorporation on the Structure and Mechanical Properties of the Al–Zn Alloy System

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A series of Al-xZn alloys (x = 0–30 wt.%) were prepared to investigate the effect of Zn on their structure and mechanical properties. The alloys with Zn content ranging from 0 to 10 wt.% were consisted of single α-Al solid solution phases, but when more than 20 wt.% was added, typical dendritic/interdendritic structure formed and was composed of α-Al phase/Zn-rich (η-rich) phase and α + η eutectoid structure. The grain size of the alloys decreased first and then increased as the Zn incorporation increased. The optimal average size of the refined grain was 122 ± 32 μm in the Al-20 wt.% Zn alloy due to the high drag pressure and low grain boundary growth rate caused by the segregation of Zn atoms and the grain boundary pinning by Zn nanoparticles (η-PP). Moreover, the Al-20Zn alloy demonstrated balanced strength and reasonable ductility and the main strengthening mechanism mainly relied on boundary strengthening by grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu C Y, Zhang X, Xia C Q, Feng Z H, Liu S G, Zhang Z G, Ma M Z, and Liu R P, Mat Sci Eng A 703 (2017) 45.

    Article  CAS  Google Scholar 

  2. Fan Z, Wang Y, Zhang Y, Qin T, Zhou X R, Thompson G E, Pennycook T, and Hashimoto T, Acta Mater 84 (2015) 292.

    Article  CAS  Google Scholar 

  3. Mai B T N, Dong N X, Khanh P M, and Huy T D, Int J Mod Phys B 34 (2020) 2040125.

    Article  CAS  Google Scholar 

  4. Greer A L, Bunn A, Tronche A, Evans P V, and Bristow D J, Acta Mater 48 (2000) 2823.

    Article  CAS  Google Scholar 

  5. Quested T E and Greer A L, Acta Mater 53 (2005) 2683.

    Article  CAS  Google Scholar 

  6. Yang L, Wang L, and Yang M, Materials 13 (2020) 231.

    Article  CAS  Google Scholar 

  7. Li H T, Wang Y, and Fan Z, Acta Mater 60 (2012) 1528.

    Article  CAS  Google Scholar 

  8. Li J, Hage F S, Ramasse Q M, and Schumacher P, Acta Mater, 206 (2021) 116652.

    Article  CAS  Google Scholar 

  9. Shin S S, Lim K M, and Park I M, Mat Sci Eng A 679 (2017) 340.

    Article  CAS  Google Scholar 

  10. Shin S S, Lim K M, and Park I M, J Alloy Compd 671 (2016) 517.

    Article  CAS  Google Scholar 

  11. Valiev R Z, Murashkin M Y, Kilmametov A, Straumal B, Chinh N Q, and Langdon T G, J Mater Sci 45 (2010) 4718.

    Article  CAS  Google Scholar 

  12. Straumal B B, Baretzky B, Mazilkin A A, Phillipp F, Kogtenkova O A, Volkov M N, and Valiev R Z, Acta Mater 52 (2004) 4469.

    Article  CAS  Google Scholar 

  13. Wu C, Yang H, Li H, and Fan X, Chinese Sci Bull, 57 (2012) 1473.

    Article  CAS  Google Scholar 

  14. Hersent E, Marthinsen K, and Nes E, Model Numer Simul Mater Sci, 4 (2014) 8.

    CAS  Google Scholar 

  15. Derby B, Acta Metal Mater 39 (1991) 955.

    Article  CAS  Google Scholar 

  16. Hadorn J P, Hantzsche K, Yi S, Bohlen J, Letzig D, and Agnew S R, Metall Mater Trans A, 43 (2012) 1363.

    Article  CAS  Google Scholar 

  17. Jin Z, Yu D, Wu X, Yin K, and Yan K, J Mater Sci Technol 32 (2016) 1260.

    Article  CAS  Google Scholar 

  18. Hoseini-Athar M M, Mahmudi R, Prasath Babu R, and Hedström P, J Alloy Compd 831 (2020) 154766.

    Article  CAS  Google Scholar 

  19. Liu C Y, Qu B, Ma Z Y, Ma M Z, Liu R P, Mat Sci Eng A 657 (2016) 284.

    Article  CAS  Google Scholar 

  20. Zhou W B, Liu C Y, Yu P F, Zhang B, Ma Z Y, Luo K, Ma M Z, and Liu R P, Mater Charact 127 (2017) 371.

    Article  CAS  Google Scholar 

  21. Mazilkin A A, Straumal B B, Rabkin E, Baretzky B, Enders S, Protasova S, Kogtenkova O A, and Valiev R Z, Acta Mater, 54 (2006) 3933.

    Article  CAS  Google Scholar 

  22. Zhang W, Lin B, Zhang D, and Li Y, Mater Design 52 (2013) 225.

    Article  CAS  Google Scholar 

  23. Qin C, Gou G Q, Che X L, Chen H, Chen J, Li P, and Gao W, Mater Design 91 (2016) 278.

    Article  CAS  Google Scholar 

  24. Shanmugasundaram T, Heilmaier M, Murty B S, and Sarma V S, Mat Sci Eng A 527 (2010) 7821.

    Article  Google Scholar 

  25. Hansen N, Scripta Mater, 51 (2004) 801.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from Basic Research Program of Jiangsu Province (Grants No. BK20181047) and Natural Science Research of Jiangsu Higher Education Institutions of China (Grants No. 18KJB430012) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaojiao Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, X., Yang, L. et al. The Effect of Zn Incorporation on the Structure and Mechanical Properties of the Al–Zn Alloy System. Trans Indian Inst Met 75, 79–90 (2022). https://doi.org/10.1007/s12666-021-02402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02402-7

Keywords

Navigation