Skip to main content

Advertisement

Log in

Microstructural Evolution and Mechanical Properties of Nano-Yttria Dispersed 316 L Austenitic Stainless Steel by Mechanical Alloying and Sintering

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Composite powders of pre-alloyed 316 L austenitic stainless steel with yttria (Y2O3) powder in various compositions (0.3, 1.0, 1.5 and 2 wt%) were synthesized by mechanical alloying using a high energy ball mill. The 25-h milled powder has shown no changes other than exhibiting an austenite phase of FCC (a = 3.54 Å) structure. Milled powders were found to contain nano-yttria dispersed in the austenitic stainless steel matrix of nano-crystallite size and with high lattice strain. Milled powders were cold pressed and sintered at 1100 °C (1373 K) in a controlled atmosphere. It can be inferred that nano-yttria dispersion restricts grain growth of matrix even during conventional sintering. The present yittria dispersed austenitic alloy showed the low physical density and increase in compressive strength (194–374 MPa) and hardness (477–528 HV). The compressive strength and hardness enhancement can be attributed primarily to the dispersoids of nano-yttria in the austenitic matrix by dispersion strengthening/hardening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ukai T, Nishida S, Okuda T, and Yoshitake T, J Nucl Mater 263 (1998) 1745.

    Article  Google Scholar 

  2. Raman L, Gothandapani K, and Murty B S, Def Sci J 66 (2016) 316.

    Article  CAS  Google Scholar 

  3. El-genk M S, and Tournier J, J Nucl Mater 340 (2005) 93. https://doi.org/https://doi.org/10.1016/j.jnucmat.2004.10.118.

    Article  CAS  Google Scholar 

  4. Yvon P, and Carré F, J Nucl Mater 385 (2009) 217. https://doi.org/https://doi.org/10.1016/j.jnucmat.2008.11.026.

    Article  CAS  Google Scholar 

  5. Susila P, Sturm D, Heilmaier M, Murty B S, and Sarma V S, J Mater Sci 45 (2010) 4858. https://doi.org/https://doi.org/10.1007/s10853-010-4264-3.

    Article  CAS  Google Scholar 

  6. Murty K L, and Charit I, J Nucl Mater 383 (2008) 189. https://doi.org/https://doi.org/10.1016/j.jnucmat.2008.08.044.

    Article  CAS  Google Scholar 

  7. Veternikova J S, Degmova J, Pekarcikova M, Simko F, Petriska M, Skarba M, Mikula P, and Pupala M, Appl Surf Sci 387 (2016) 965. https://doi.org/https://doi.org/10.1016/j.apsusc.2016.06.151.

    Article  CAS  Google Scholar 

  8. David C, Panigrahi B K, Balaji S, Balamurugan A K, Nair K G M, Amarendra G, and Sundar C S, J Nucl Mater 383 (2008) 132. https://doi.org/https://doi.org/10.1016/j.jnucmat.2008.08.049.

    Article  CAS  Google Scholar 

  9. Ukai S, and Fujiwara M, J Nucl Mater 311 (2002) 749.

    Article  Google Scholar 

  10. Ken H, Yao Z, Zhou Z, Wang M, Kaitasov O, and Daymond M R, J Nucl Mater 455 (2014) 242. https://doi.org/https://doi.org/10.1016/j.jnucmat.2014.06.024.

    Article  CAS  Google Scholar 

  11. Seils S, Kauffmann A, Hinrichs F, Schliephake D, Boll T, and Heilmaier M, Mater Sci Eng A 786 (2020) 139452. https://doi.org/https://doi.org/10.1016/j.msea.2020.139452.

    Article  CAS  Google Scholar 

  12. Masuda H, Tobe H, Sato E, Sugino Y, and Ukai S, Acta Mater 132 (2017) 245. https://doi.org/https://doi.org/10.1016/j.actamat.2017.04.047.

    Article  CAS  Google Scholar 

  13. Klueh R L, Hashimoto N, Kenik E A, and Miyahara K, J Nucl Mater 311 (2008) 773.

    Google Scholar 

  14. Oka H, Watanabe M, Hashimoto N, Ohnuki S, and Yamashita S, J Nucl Mater 442 (2013) S164. https://doi.org/https://doi.org/10.1016/j.jnucmat.2013.04.073.

    Article  CAS  Google Scholar 

  15. Oka K, Ohnuki S, Yamashita S, Akasaka N, Ohtsuka S, and Tanigawa H, Mater Trans 48 (2007) 2563. https://doi.org/https://doi.org/10.2320/matertrans.MD200715.

    Article  CAS  Google Scholar 

  16. De Sanctis M, Fava A, Lovicu G, Montanari R, Richetta M, Testani C, and Varone A, Metals (Basel) 7 (2017) 1. https://doi.org/https://doi.org/10.3390/met7080283.

    Article  CAS  Google Scholar 

  17. Meharwal A, Kumar M, Karak S K, Majumdar J D, and Manna I, Metall Mater Trans A 51 (2020) 5257. https://doi.org/https://doi.org/10.1007/s11661-020-05918-7.

    Article  CAS  Google Scholar 

  18. Alamo M, Lambard A, Averty V, and Mathon X, J Nucl Mater 333 (2004) 333. https://doi.org/https://doi.org/10.1016/j.jnucmat.2004.05.004.

    Article  CAS  Google Scholar 

  19. Li S, Zhou Z, Jang J, Wang M, Hu H, Sun H, and Zou L, J Nucl Mater 455 (2014) 194. https://doi.org/https://doi.org/10.1016/j.jnucmat.2014.05.061.

    Article  CAS  Google Scholar 

  20. Ganesan D, Sellamuthu P, and Prashanth K G, J Manuf Mater Process 4 (2020) 93. doi:https://doi.org/10.3390/jmmp4030093.

    Article  CAS  Google Scholar 

  21. Peng Y, Yu L, Liu Y, Ma Z, Li H, and Liu C, Mater Sci Eng A 767 (2019) 138419. https://doi.org/https://doi.org/10.1016/j.msea.2019.138419.

    Article  CAS  Google Scholar 

  22. Shalchi B, Zahiri R, Zheng W, Guzonas D, Chmielus M, Chen W, and Li J, J Supercrit Fluids 119 (2017) 245. https://doi.org/https://doi.org/10.1016/j.supflu.2016.10.002.

    Article  CAS  Google Scholar 

  23. Shivam V, Basu J, Pandey V K, Shadangi Y, and Mukhopadhyay N K, Adv Powder Technol 29 (2018) 2221. https://doi.org/https://doi.org/10.1016/j.apt.2018.06.006.

    Article  CAS  Google Scholar 

  24. Suryanarayana C, Prog Mater Sci 46 (2001) 1. https://doi.org/https://doi.org/10.1016/S0079-6425(99)00010-9.

    Article  CAS  Google Scholar 

  25. Shivam V, Shadangi Y, Basu J, and Mukhopadhyay N K, J Mater Res 35 (2019) 787. https://doi.org/https://doi.org/10.1557/jmr.2019.5.

    Article  CAS  Google Scholar 

  26. Suryanarayana C, Ivanov E, and Boldyrev V, Mater Sci Eng A 304 (2001) 151. https://doi.org/https://doi.org/10.1016/S0921-5093(00)01465-9.

    Article  Google Scholar 

  27. Shadangi Y, Sharma S, Shivam V, Basu J, Chattopadhyay K, Majumdar B, and Mukhopadhyay N K, J Alloys Compd 828 (2020) 154258. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.154258.

    Article  CAS  Google Scholar 

  28. Ali F, Scudino S, Liu G, Srivastava V C, Mukhopadhyay N K, Khoshkhoo M S, Prashanth K G, Uhlenwinkel V, Calin M, and Eckert J, J Alloys Compd 536 (2012) S130. https://doi.org/https://doi.org/10.1016/j.jallcom.2011.12.022.

    Article  CAS  Google Scholar 

  29. Karak S K, Majumdar J D, Witczak Z, Lojkowski W, and Manna I, Mater Sci Eng A 580 (2013) 231. https://doi.org/https://doi.org/10.1016/j.msea.2013.04.085.

    Article  CAS  Google Scholar 

  30. Boegelein T, Dryepondt S N, Pandey A, Dawson K, and Tatlock G J, Acta Mater 87 (2015) 201. https://doi.org/https://doi.org/10.1016/j.actamat.2014.12.047.

    Article  CAS  Google Scholar 

  31. Hunt R M, Kramer K J, and El-dasher B, J Nucl Mater 464 (2015) 80. https://doi.org/https://doi.org/10.1016/j.jnucmat.2015.04.011.

    Article  CAS  Google Scholar 

  32. Ghayoor M, Lee K, He Y, Chang C, Paul B K, and Pasebani S, Mater Sci Eng A 788 (2020) 139532. https://doi.org/https://doi.org/10.1016/j.msea.2020.139532.

    Article  CAS  Google Scholar 

  33. Dai C, Schade C, Apelian D, and Lavernia E J, Metall Mater Trans B 49 (2018) 3043. https://doi.org/https://doi.org/10.1007/s11663-018-1429-y.

    Article  CAS  Google Scholar 

  34. Klar P K, and Samal E, Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties, ASM International (2007) 1.

  35. Okuda T, and Fujiwara M, J Mater Sci Lett 14 (1995) 1600. https://doi.org/https://doi.org/10.1007/BF00455428.

    Article  CAS  Google Scholar 

  36. Wang M, Sun H, Zou L, Zhang G, Li S, and Zhou Z, Powder Technol 272 (2015) 309. https://doi.org/https://doi.org/10.1016/j.powtec.2014.12.008.

    Article  CAS  Google Scholar 

  37. Kim I, and Choi B, Met Mater Int 8 (2002) 265.

    Article  CAS  Google Scholar 

  38. Saber M, Xu W, Li L, Zhu Y, Koch C C, and Scattergood R O, J Nucl Mater 452 (2014) 223. https://doi.org/https://doi.org/10.1016/j.jnucmat.2014.05.014.

    Article  CAS  Google Scholar 

  39. Murty B S, and Ranganathan S, Int Mater Rev 43 (1998) 101.

    Article  CAS  Google Scholar 

  40. Benjamin J S, and Volin T E, Metall Trans 5 (1974) 1929.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. R.K Mandal, Dr. Joysurya Basu, Mr Yagnesh Shadangi and Mr. Saptarshi Mukherjee for many stimulating discussions and their support. Authors are also grateful to the Advanced Research Centre for Iron and steel (ARCIS) of the Institute funded by the Steel Development Fund, Ministry of Steel, India. The authors would also like to acknowledge the DST-FIST funding for providing Electron microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Shivam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, T., Shivam, V., Chattopadhyay, K. et al. Microstructural Evolution and Mechanical Properties of Nano-Yttria Dispersed 316 L Austenitic Stainless Steel by Mechanical Alloying and Sintering. Trans Indian Inst Met 74, 2093–2104 (2021). https://doi.org/10.1007/s12666-021-02317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02317-3

Keywords

Navigation