Skip to main content
Log in

Effect of Aluminum Doping on Microstructures and Thermoelectric Properties of BiCuSeO Thermoelectric Materials

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Bi1-xAlxCuSeO (x = 0, 0.025, 0.05, 0.075, 0.1, 0.125) thermoelectric materials had been prepared by a series of procedures as high energy ball milling, high temperature solid phase reaction and hot press sintering. The microstructures and thermoelectric properties of these thermoelectric materials had been researched. The results show that these thermoelectric materials are relatively pure in addition to very small amounts of impurities such as Bi2O3 and Al4Cu9; the structures of specimens present lamellar and tetragonal crystal system; they have good thermal stability in air. However, CuSe appears when x is 0.125, which is harmful to the thermal stability of the material. The values of carrier concentration, conductivity and ZT of most of the aluminum doping specimens are larger than those of the specimens without aluminum doping, and at 873 K when x is 0.075, the conductivity and the ZT value (the maximum value is 0.65) increases respectively about 6.5 times and 2.5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. K. Sahu, A. K. Bohra, P.G. Abichandani,A.Singh,S.Bhattacharya, R.Bhatt, R.Basu,P. Sarkar, S.K. Gupta,K.P. Muthe, S.C. Gadkari, Design and development of DC to DC voltage booster to integrate with PbTe/TAGS-85 based thermoelectric power generators, Mater. Sci. Energy Technol. (2019), 2(3), 423-433.

    Google Scholar 

  2. S. Lv, W. He, Z. T. Hu, M. H. Liu, M. H. Qin, S. Shen, W. Gong, High-performance terrestrial solar thermoelectric generators without optical concentration for residential and commercial rooftops, Energy Convers. Manage. (2019), 196, 69-76.

    Article  Google Scholar 

  3. A. Abdo, S. Ookawara, M. Ahmed. Performance evaluation of a new design of concentrator photovoltaic and solar thermoelectric generator hybrid system, Energy Convers. Manage. (2019), 195, 1382-1401.

    Article  Google Scholar 

  4. M. Gao, J. S. Zhang, D. M. Rowe, Thermoelectric conversion and its application, Weapon Industry Press, Bei Jing, (1996).

    Google Scholar 

  5. Y. Du, J. Y. Xu, B. Paul, P. Eklund, Flexible thermoelectric materials and devices, Appl. Mater. Today, (2018), 12, 366-388.

    Article  Google Scholar 

  6. T. R. Wei, C. F. Wu, F. Li, J. F. Li, Low-cost and environmentally benign selenides as promising thermoelectric materials, J. Materiomics. (2018), 4(4), 304-320.

    Article  Google Scholar 

  7. D. M. Rowe, CRC Handbook of Thermoelectric, CRC Press, Boca Raton, (1995).

    Book  Google Scholar 

  8. C. C. Li, F. X. Jiang,C. C. Liu, P. P. Liu, J. K. Xu, Present and future thermoelectric materials toward wearable energy harvesting, Appl. Mater. Today. (2019), 15, 543-557.

    Article  Google Scholar 

  9. N. Salah, N. Baghdadi, A. Alshahrie, A. Saeed,A. Ansari,A.R. Memic,A. Koumoto, Nanocomposites of CuO/SWCNT: Promising thermoelectric materials for mid-temperature thermoelectric generators, J. Eur. Ceram. Soc. (2019), 39(11), 3307-3314.

    Article  CAS  Google Scholar 

  10. Y. Osamu,S. Nobuhiro, Thermoelectric properties of Si1-XGex (x≤0. 10) with alloy and dopant segregations, J. Appl. Phys. (2000), 88(1), 245-251.

    Article  Google Scholar 

  11. I. Masatoshi, S. Won-Son, K. Kunihito, Thermoelectric properties of PbTe thin films prepared by gas evaporation method, J. Mater. Res. (1999), 14(1), 209-212.

    Article  Google Scholar 

  12. [12] X. Z. Gong, Z. X. Wu, Y. C. Peng, X. X. Zhu, Q. Y. Zhang, Y. Yuan, J. N. Tang, Preparation of Si-Ge thermoelectric material by mechanical alloying, CailiaoRechuliXuebao, (2012), 33(11) 1-5.

    CAS  Google Scholar 

  13. F. Mao, Z. X. Wu, J. N. Tang, H. Wang, Z. K. Liu, X. Z. Gong, Synthesis and properties of n-type and p-type Si80Ge20based thermoelectric materials, CailiaoRechuliXuebao, (2013), 34(7), 6-11.

    CAS  Google Scholar 

  14. L.D. Zhao, D. Berardan, Y. L. Pei, C. Byl, Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials, Appl. Phys. Lett. (2010), 97(9), 105-108.

    Article  Google Scholar 

  15. A. Achour, K. Chen, M. J. Reece, Z. R. Huang. Enhanced thermoelectric performance of Cs doped BiCuSeO prepared through eco-friendly flux synthesis, J. Alloys Compd. (2018), 735, 861-869.

    Article  CAS  Google Scholar 

  16. A. Novitskiy, G. Guelou, D. Moskovskikh, A. Voronin, Reactive spark plasma sintering and thermoelectric properties of Nd-substituted BiCuSeOoxyselenides, J. Alloys Compd. (2019), 785, 96-104.

    Article  Google Scholar 

  17. J. D. Lei, W. B. Guan, D. Zhang, Z. Ma, X. Y. Yang, C. Wang, Y. X. Wang, Isoelectronic indium doping for thermoelectric enhancements in BiCuSeO, Appl. Surf. Sci. (2019), 473, 985-991.

    Article  CAS  Google Scholar 

  18. Y. Liu, L. D. Zhao, Y. C. Liu, J. L. Lan, W. Xu, F. Li, B. P. Zhang, D. Berardan, N. Dragoe, Y. H. Lin, C. W. Nan, J. F. Li, H. M. Zhu, Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies, J. Am. Chem. Soc. (2011), 133(50),20112-20115.

    Article  CAS  Google Scholar 

  19. K. Ueda, S. Inoue, H. Hosono, N. Sarukura, M.Hirano, Room-temperature excitons in wide-gap layered-oxysulfide semiconductor: LaCuOS, Appl. Phys. Lett. (2001), 78(16), 2333-2335.

    Article  CAS  Google Scholar 

  20. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La [O1-xFx]FeAs (x=0.05-0.12) with Tc=26K, J. Am. Chem. Soc. (2008), 130(11), 3296-3297.

    Article  CAS  Google Scholar 

  21. B. Feng, G. Q. Li, Y. H. Hou, C. C. Zhang, C. Q. Jiang, J. Hu, Q. S. Xiang, Y. W. Li, Z. He, X. A. Fan, Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap, J. Alloys Compd. (2017), 712, 386-393.

    Article  CAS  Google Scholar 

  22. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors, Phys. Rev. Lett. (2006), 96(4), 045901-045904.

    Article  Google Scholar 

  23. L. D. Zhao, J. Q. He, D. Berardan,Y. H. Lin, J. F. Li, C.W. Nan, N. Dragoe, BiCuSeOoxyselenides: New promising thermoelectric materials, Energy Environ. Sci. (2014), 7(9), 2900-2924.

    Article  CAS  Google Scholar 

  24. J. Li, J. H. Sui, Y. L. Pei, C. Barreteau, A high theremoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeOoxyselenides, Energy Environ. Sci. (2012), 25(9), 8543-8547.

    Article  Google Scholar 

  25. B. Feng, G.Q. Li, P. Zhao, X. M. Hu, P. H. Liu, Y. W. Li, Z. He, X. A. Fan, Enhanced thermoelectric performances in BiCuSeOoxyselenides via Er and 3D modulation doping, Ceram. Int. (2019), 45, 4493-4498.

    Article  CAS  Google Scholar 

  26. Y. C. Liu,Y. H. Zheng, B. Zhan, K. Chen, S. Butt, B. P. Zhang, Y. H. Lin, Influence of Ag doping on thermoelectric properties of BiCuSeO, J. Eur. Ceram. Soc. (2015), 35(2), 845-849.

    Article  CAS  Google Scholar 

  27. J. Li, J. H. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. L. Pei, L. D. Zhao, Thermoelectric properties of Mg doped p-type BiCuSeOoxyselenides,J. Alloys Compd. (2013), 551(551), 649-653.

    Article  CAS  Google Scholar 

  28. Y. Z. Pei, N. Heinz, A. LaLonde, G. J. Snyder, Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci. (2011), 4(9), 3640-3645.

    Article  CAS  Google Scholar 

  29. B. Feng, G. Q. Li, P. Zhao, X. M. Hu, P. H. Liu, Z. He, Y. W. Li, X. A. Fan, Effect of synthesis processes on the thermoelectric properties of BiCuSeOoxyselenides, J. Alloys Compd. (2018), 745,131-138.

    Article  Google Scholar 

  30. H. S. Kim, Z. M. Gibbs, Y. L. Tang, H. Wang, Characterization of Lorenz number with Seebeck coefficient measurement, APL Mater. (2015), 3(4), 041506-041511.

    Article  Google Scholar 

  31. A. Novitskiy, G. Guélou, D. Moskovskikh, A. Voronin, E. Zakharova, L. Shvanskaya, A. Bogach, A. Vasiliev, V. Khovaylo, T. Mori, Reactive spark plasma sintering and thermoelectric properties of Nd-substituted BiCuSeOoxyselenides, J. Alloys Compd. (2019), 785, 96-104.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funded project of MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials (2021GXMPSF02), and The First Batch of Guangxi Innovation-driven Development Projects in 2017 (Major Project of Science and Technology) (AA17202008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Li, A., Rao, Y. et al. Effect of Aluminum Doping on Microstructures and Thermoelectric Properties of BiCuSeO Thermoelectric Materials. Trans Indian Inst Met 74, 2367–2377 (2021). https://doi.org/10.1007/s12666-021-02308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02308-4

Keywords

Navigation