Skip to main content
Log in

Effect of Al Doping and Cu Deficiency on the Microstructures and Thermoelectric Properties of BiCuSeO-Based Thermoelectric Materials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of low-price element Al doping and Cu deficiency on the thermoelectric performance of Bacchus are studied in the paper. Bi1−xAlxCu1−xSeO (x = 0, 0.025, 0.05, 0.075, 0.1, 0.125) were prepared by high-energy ball-milling, high-temperature solid-state reaction and hot-press sintering. Due to the massive substitutions of Bi3+ with Al2+, the Al in Bacchus exceeds the solution limit and the thermal conductivity decreases significantly. The structure of the thermoelectric materials is lamellar and tetragonal, and Al doping and Cu deficiency can refine the grains. The deficiency of Cu can reduce the generation of Al4Cu9, which guarantees the stability of the sample at high temperature and leads to the formation of a large number of holes. Moreover, the hole carrier again becomes the main carrier of the sample. Therefore, all the samples belong to p-type semiconductors at room temperature. In the results, the combination of optimized conductivity and thermal conductivity is helpful to improve the ZT value; the maximum the ZT value is 0.90 of Bi0.875Al0.125Cu0.875SeO at 873 K, which is 2.46 times higher than that of Bacchus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Li, J. Li, L. Zhao, K. Xiang, Y. Liu, B. Zhang, Y. Lin, C. Nan, and H. Zhu, Energy Environ. Sci. 5, 7188 (2012).

    Article  CAS  Google Scholar 

  2. L. Zhao, J. He, D. Berardan, Y. Lin, J. Li, C. Nan, and N. Dragoe, Energy Environ. Sci. 7, 2900 (2014).

    Article  CAS  Google Scholar 

  3. M. Farooq, S. Butt, K. Gao, Y. Zhu, X. Sun, X. Pang, S.U. Khan, F. Mohmed, A. Mahmood, and N. Mahmood, RSC Adv. 6, 33789 (2016).

    Article  CAS  Google Scholar 

  4. J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L. Zhao, J. Mater. Chem. A 2, 4903 (2014).

    Article  CAS  Google Scholar 

  5. S. Tan, H. Lei, D. Shao, H. Lv, W. Lu, Y. Huang, Y. Liu, B. Yuan, L. Zu, and X. Kan, Appl. Phys. Lett. 105, 82109 (2014).

    Article  Google Scholar 

  6. J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L. Zhao, J. Alloys Compd. 551, 649 (2013).

    Article  CAS  Google Scholar 

  7. J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L. Zhao, Energy Environ. Sci. 5, 8543 (2012).

    Article  CAS  Google Scholar 

  8. G. Ren, S. Butt, C. Zeng, Y. Liu, B. Zhan, J. Lan, Y. Lin, and C. Nan, J. Electron. Mater. 44, 1627 (2015).

    Article  CAS  Google Scholar 

  9. S.D. Luu, and P. Vaqueiro, Semicond. Sci. Technol. 29, 64002 (2014).

    Article  CAS  Google Scholar 

  10. C. Hsiao, and X. Qi, Acta Mater. 102, 88 (2016).

    Article  CAS  Google Scholar 

  11. A. Achour, K. Chen, M.J. Reece, and Z. Huang, J. Alloys Compd. 735, 861 (2018).

    Article  CAS  Google Scholar 

  12. C. Barreteau, D. Bérardan, E. Amzallag, L. Zhao, and N. Dragoe, Chem. Mater. 24, 3168 (2012).

    Article  CAS  Google Scholar 

  13. M. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo, D. Zhang, Y. Cheng, and Z. Zhou, J. Electron. Mater. 44, 2849 (2015).

    Article  Google Scholar 

  14. J. Tang, R. Xu, J. Zhang, D. Li, W. Zhou, X. Li, Z. Wang, F. Xu, G. Tang, and G. Chen, ACS Appl. Mater. Interfaces 11, 15543 (2019).

    Article  CAS  Google Scholar 

  15. Y. Liu, L.D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D.B. Liu, W. Xu, Y.H. Lin, and C.W. Nan, Adv. Energy Mater. 6, 1502423 (2016).

    Article  Google Scholar 

  16. C. Li, D. Guo, K. Li, B. Shao, D. Chen, Y. Ma, and J. Sun, Physica E 97, 392 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by found project of MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials (2021GXMPSF02), and The First Batch of Guangxi Innovation-driven Development Projects in 2017 (Major Project of Science and Technology) (Grant No. Guide AA17202008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Li, A., Huang, Z. et al. Effect of Al Doping and Cu Deficiency on the Microstructures and Thermoelectric Properties of BiCuSeO-Based Thermoelectric Materials. J. Electron. Mater. 50, 3580–3591 (2021). https://doi.org/10.1007/s11664-021-08862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08862-3

Keywords

Navigation