Skip to main content
Log in

Formation and Evolution of Microstructure in Shape Memory Alloy Wire Reinforced Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, we study the mechanical response of shape memory alloy (SMA) wire reinforced composites using a recently developed novel discrete particle model. In this model, the discrete particles interact through forces specified by the continuum thermoelastic free energy of the material. We study the formation and evolution of fine microstructure in the SMA composites with different matrix properties under thermal and mechanical loads. The effect of phase transformation and detwinning in the SMA on the overall mechanical response of the composite is studied. The elastic modulus of the matrix has a significant effect on the formation of the microstructure of the SMA. This in turn affects the overall damping response of the composite. Interestingly, in the case with high Young’s modulus of the matrix, a retwinning process is observed upon unloading a detwinned wire. These results provide insights for the design and analysis of SMA composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The free energy used in this study is based on the energy developed for CuAlNi alloy by Vedantam and Abeyaratne [35]. Thus, we use the density of CuAlNi SMA here.

References

  1. Mangalgiri P D, Bull Mater Sci 22 (1999) 657.

    Article  CAS  Google Scholar 

  2. Puglia D, Biagiotti J, and Kenny J M, J Nat Fibers 1 (2005) 23.

    Article  Google Scholar 

  3. Yun W, Chengyan D, Bin Y, Lu Z, and Shenshen C, Compos Struct 202 (2018) 818.

    Article  Google Scholar 

  4. Karunagaran N, Bharathiraja G, Muniappan A , and Yoganandam K, Mater Today Proc 22 (2020) 1078.

    Article  CAS  Google Scholar 

  5. Mohammadkhani P, Jalali S S, and Safarabadi M, Compos Struct 256 (2021) 112992.

    Article  Google Scholar 

  6. Cohades A, and Michaud V, Adv Ind Eng Polym Res 1 (2018) 66.

    Google Scholar 

  7. Karger K J, and Keki S, Polymers 10 (2017) 34.

    Article  Google Scholar 

  8. Lester B, Baxevanis T, Chemisky Y, and Lagoudas DC, Acta Mech 226 (2015) 3907.

    Article  Google Scholar 

  9. Kumar P K, and Lagoudas D C, Introduction to Shape Memory Alloy (2008).

  10. Mohd J J, Leary M, Subic A, and Gibson M A, Mater Des 56 (2014) 1078.

    Article  Google Scholar 

  11. Antonucci V, and Martone A, Phenomenology of Shape Memory Alloys (2021) p 115.

  12. Aboudi J, Arnold S, and Bednarcyk B, Micromechanical Analysis of Smart Composite Materials (2013) p 677.

  13. Raghavan J, Bartkiewicz T, Boyko S, Kupriyanov M, Rajapakse N, and Yu B, Compos B Eng 41 (2010) 214

    Article  Google Scholar 

  14. Sun M, Wang Z, Yang B, and Sun X, Compos Struct 171 (2017) 170.

    Article  Google Scholar 

  15. Rodrigue H, Wang W, Bhandari B, Han M W, and Ahn S H, Compos B Eng 82 (2015) 152.

    Article  Google Scholar 

  16. Humbeeck J V, J Alloys Compd 355 (2003) 58.

    Article  Google Scholar 

  17. Jonnalagadda K, Kline G E, and Sottos N R. Exp Mech 37 (1997) 78.

    Article  CAS  Google Scholar 

  18. Payandeh Y, Meraghni F, Patoor E, and Eberhardt A, Mater Des 39 (2012) 104.

    Article  CAS  Google Scholar 

  19. Zhang X, Feng P, He Y, Yu T, and Sun Q, Int J Mech Sci 52 (2010) 1660.

    Article  Google Scholar 

  20. Scalet G, and Auricchio F, Shape Memory Alloy Engineering (Second Edition) (2021) p 345.

  21. Sacco E, and Artioli E, Shape Memory Alloy Engineering (Second Edition) (2021) p 291.

  22. Marfia S, and Vigliotti A, Shape Memory Alloy Engineering (Second Edition) (2021) p 247.

  23. Puglisi G, and Truskinovsky L, J Mech Phys Solids 48 (2000) 1.

    Article  Google Scholar 

  24. Puglisi G, and Truskinovsky L, J Mech Phys Solids 50 (2002) 165.

    Article  Google Scholar 

  25. Zhong Y, and Zhu T, Acta Mech 75 (2014) 337.

    CAS  Google Scholar 

  26. Pun G P P, and Mishin Y, J Phys Condens Matter 22 (2010) 395403.

    Article  Google Scholar 

  27. Chen H, Xu Y, Jiao Y, and Liu Y, J Mater Sci Eng A 659 (2016) 234.

    Article  CAS  Google Scholar 

  28. Salviato M, Zappalorto M, and Quaresimin M, Compos Part A Appl Sci Manuf 48 (2013) 144.

    Article  CAS  Google Scholar 

  29. Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, and Rabczuk T, Compos B Eng 93 (2016) 97.

    Article  CAS  Google Scholar 

  30. Uchimali M, Rao B C, and Vedantam S, Comput Methods Appl Mech Eng 366 (2020) 113052.

    Article  Google Scholar 

  31. Uchimali M, Rao B C, and Vedantam S, Acta Mater 205 (2021) 116528.

    Article  CAS  Google Scholar 

  32. Wang G, Ostaz A A, Cheng A H D, and Mantena P R, Comput Mater Sci 44 (2009) 1126.

    Article  Google Scholar 

  33. Nikolic M, Karavelic E, Ibrahimbegovic A, and Miščevic P, Arch Comput Methods Eng 25 (2018) 753.

    Article  Google Scholar 

  34. Uchimali M, Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2021.1909787

  35. Vedantam S, and Abeyaratne R, Int J Non Linear Mech 40 (2005) 177.

    Article  Google Scholar 

  36. Palánki Z, Daróczi L, Lexcellent C, and Beke D L, Acta Mater 55 (2007) 1823.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the computing resources at HPCE, IIT Madras. The authors wish to acknowledge and thank Dr. Mahendaran Uchimali for his participation in numerous critical discussions and his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth Vedantam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananchaperumal, V., Vedantam, S. Formation and Evolution of Microstructure in Shape Memory Alloy Wire Reinforced Composites. Trans Indian Inst Met 74, 2499–2510 (2021). https://doi.org/10.1007/s12666-021-02283-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02283-w

Keywords

Navigation