Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Effects of Primary Stored Energy on Relaxation Behavior of High Entropy Bulk Metallic Glasses Under Compressive Elastostatic Loading

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

This article was retracted on 29 March 2024

This article has been updated

Abstract

This paper aims to show the effects of primary stored energy in high entropy bulk metallic glasses (HE-BMGs) on their relaxation behavior after elastostatic loading process. For this purpose, three HE-BMGs with different chemical compositions and primary stored energy were fabricated. Differential scanning calorimetry and nanoindentation tests were carried out to evaluate the relaxation enthalpy and microscopic mechanical characterization of alloys. The results showed that increase in the number of element types in the alloying composition leads to the increment of stored energy and structural heterogeneity in the primary alloys. Moreover, the elastostatic loading rejuvenates the primary alloys; however, an optimum heterogeneity is needed for the maximum structural heterogeneity and stored energy in the glassy alloy. The hardness measurements also indicate that the elastostatic loading intensifies the hardness variations in the alloys, which may be due to the increased structural heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Korkmaz S, and Kariper İ A, J Non Cryst Solids 527 (2020) 119753. https://doi.org/10.1016/j.jnoncrysol.2019.119753.

    Article  CAS  Google Scholar 

  2. Li Y, Shen Y, Leu M C, and Tsai H-L, Mater Sci Eng A 743 (2019) 404. https://doi.org/10.1016/j.msea.2018.11.056.

    Article  CAS  Google Scholar 

  3. Williams E, and Lavery N, J Mater Process Technol 247 (2017) 73. https://doi.org/10.1016/j.jmatprotec.2017.03.034.

    Article  CAS  Google Scholar 

  4. Bordeenithikasem P, Stolpe M, Elsen A, and Hofmann D C, Addit Manuf 21 (2018) 312. https://doi.org/10.1016/j.addma.2018.03.023.

    Article  CAS  Google Scholar 

  5. George E P, Curtin W A, and Tasan C C, Acta Mater 188 (2020) 435. https://doi.org/10.1016/j.actamat.2019.12.015.

    Article  CAS  Google Scholar 

  6. Ikeda Y, Grabowski B, and Körmann F, Mater Charact 147 (2019) 464. https://doi.org/10.1016/j.matchar.2018.06.019.

    Article  CAS  Google Scholar 

  7. Chen J, Zhou X, Wang W, Liu B, Lv Y, Yang W, Xu D, and Liu Y, J Alloys Compd 760 (2018) 15. https://doi.org/10.1016/j.jallcom.2018.05.067.

    Article  CAS  Google Scholar 

  8. Miracle D B, and Senkov O N, Acta Mater 122 (2017) 448. https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  9. Mollaqasem V K, Ardakani M H, and Hesaraki S, J Res Sci Eng Technol 1 (2013) 1.

    Article  Google Scholar 

  10. Wang W H, JOM 66 (2014) 2067. https://doi.org/10.1007/s11837-014-1002-3.

    Article  CAS  Google Scholar 

  11. Jin J, Li F, Yin G, Wang X, and Gong P, Thermochim Acta 690 (2020) 178650. https://doi.org/10.1016/j.tca.2020.178650.

    Article  CAS  Google Scholar 

  12. Qiao J, Pelletier J, Li N, and Yao Y, J Iron Steel Res Int 23 (2016) 19. https://doi.org/10.1016/S1006-706X(16)30005-X.

    Article  Google Scholar 

  13. Wu K, Liu C, Li Q, Huo J, Li M, Chang C, and Sun Y, J Magn Magn Mater 489 (2019) 165404. https://doi.org/10.1016/j.jmmm.2019.165404.

    Article  CAS  Google Scholar 

  14. Yang M, Liu X J, Ruan H H, Wu Y, Wang H, and Lu Z P, J Appl Phys 119 (2016) 245112. https://doi.org/10.1063/1.4955060.

    Article  CAS  Google Scholar 

  15. Li C, Li Q, Li M, Chang C, Li H, Dong Y, and Sun Y, J Alloys Compd 791 (2019) 947. https://doi.org/10.1016/j.jallcom.2019.03.375.

    Article  CAS  Google Scholar 

  16. Jiang W, and Zhang B, J Appl Phys 127 (2020) 115104. https://doi.org/10.1063/5.0002225.

    Article  CAS  Google Scholar 

  17. Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, and Dick J E, Nat Commun 10 (2019) 2650. https://doi.org/10.1038/s41467-019-10303-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Dai W, Zhang M, Gong P, and Li N, J Mater Sci Technol 34 (2018) 2006. https://doi.org/10.1016/j.jmst.2018.04.006.

    Article  CAS  Google Scholar 

  19. Yin H, Huang Y, Daisenberg D, Xue P, Jiang S, Ru W, Jiang S, Bao Y, Bian X, Tong X, Shen H, and Sun J, Scr Mater 163 (2019) 29. https://doi.org/10.1016/j.scriptamat.2018.12.031.

    Article  CAS  Google Scholar 

  20. Huo J, Wang J-Q, Wang W-H, J Alloys Compd 776 (2019) 202. https://doi.org/10.1016/j.jallcom.2018.10.328.

    Article  CAS  Google Scholar 

  21. Wei R, Tao J, Sun H, Chen C, Sun G W, and Li F S, Mater Lett 197 (2017) 87. https://doi.org/10.1016/j.matlet.2017.03.159.

    Article  CAS  Google Scholar 

  22. Wang Y, Zhang K, Feng Y, Li Y, Tang W, Zhang Y, Wei B, and Hu Z, J Nucl Mater 527 (2019) 151785. https://doi.org/10.1016/j.jnucmat.2019.151785.

    Article  CAS  Google Scholar 

  23. Tong Y, Qiao J C, Pelletier J M, and Yao Y, Intermetallics 119 (2020) 106726. https://doi.org/10.1016/j.intermet.2020.106726.

    Article  CAS  Google Scholar 

  24. Wu J, Zhou Z, Yang H, Wang L, Liang X, Pi J, and Yi J, J Alloys Compd 827 (2020) 154298. https://doi.org/10.1016/j.jallcom.2020.154298.

    Article  CAS  Google Scholar 

  25. Gu J-L, Luan H-W, Zhao S-F, Bu H-T, Si J-J, Shao Y, Shao Y, and Yao, K-F, Mater Sci Eng A 786 (2020) 139417. https://doi.org/10.1016/j.msea.2020.139417.

    Article  CAS  Google Scholar 

  26. Duan YJ, Qiao JC, Crespo D, Goncharova E V, Makarov AS, Afonin G V, and Khonik V A, J Alloys Compd 830 (2020) 154564. https://doi.org/10.1016/j.jallcom.2020.154564.

    Article  CAS  Google Scholar 

  27. Samavatian M, Gholamipour R, Amadeh A A, and Mirdamadi S, Mater Sci Eng A 753 (2019) 218. https://doi.org/10.1016/j.msea.2019.03.058.

    Article  CAS  Google Scholar 

  28. Priezjev N V, Comput Mater Sci 168 (2019) 125. https://doi.org/10.1016/j.commatsci.2019.05.054.

    Article  CAS  Google Scholar 

  29. Das A, Dufresne E M, and Maaß R, Acta Mater 196 (2020) 723. https://doi.org/10.1016/j.actamat.2020.06.063.

    Article  CAS  Google Scholar 

  30. Samavatian M, Gholamipour R, Amadeh A A, and Mirdamadi S, J Non Cryst Solids 506 (2019) 39. https://doi.org/10.1016/j.jnoncrysol.2018.12.007.

    Article  CAS  Google Scholar 

  31. Wang T, Ma X, Chen Y, Qiao J, Xie L, and Li Q, Intermetallics 121 (2020) 106790. https://doi.org/10.1016/j.intermet.2020.106790.

    Article  CAS  Google Scholar 

  32. Wang Q, Zhou J, Zeng Q, Zhang G, Yin K, Liang T, Yang W, Stoica M, Sun L, and Shen B, Materialia 9 (2020) 100561. https://doi.org/10.1016/j.mtla.2019.100561.

    Article  CAS  Google Scholar 

  33. Samavatian M, Gholamipour R, Amadeh A A, and Samavatian V, Phys B Condens Matter 595 (2020) 412390. https://doi.org/10.1016/j.physb.2020.412390.

    Article  CAS  Google Scholar 

  34. Kosiba K, Şopu D, Scudino S, Zhang L, Bednarcik J, and Pauly S, Int J Plast 119 (2019) 156. https://doi.org/10.1016/j.ijplas.2019.03.007.

    Article  CAS  Google Scholar 

  35. Liu W-H, Sun B A, Gleiter H, Lan S, Tong Y, Wang X-L, Hahn H, Yang Y, Kai J-J, and Liu C T, Nano Lett 18 (2018) 4188. https://doi.org/10.1021/acs.nanolett.8b01007.

    Article  CAS  PubMed  Google Scholar 

  36. Huo L S, Zeng J F, Wang W H, Liu C T, and Yang Y, Acta Mater 61 (2013) 4329. https://doi.org/10.1016/j.actamat.2013.04.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The article was prepared as part of the state task “Research and development of complex energy-saving and thermoelectric regenerative systems” application number 2019-1497, subject number FZWG-2020-0034.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Surendar or Yu Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12666-024-03316-w"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, I.M., Ghazi, I.F., Kuzichkin, O.R. et al. RETRACTED ARTICLE: Effects of Primary Stored Energy on Relaxation Behavior of High Entropy Bulk Metallic Glasses Under Compressive Elastostatic Loading. Trans Indian Inst Met 74, 1295–1301 (2021). https://doi.org/10.1007/s12666-021-02224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02224-7

Keywords

Navigation