Skip to main content

Advertisement

Log in

Role of initial stored energy on hydrogen microalloying of ZrCoAl(Nb) bulk metallic glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the role of primary stored energy and structural heterogeneity on the subsequent effects of hydrogen microalloying in glassy alloys was studied. For this purpose, two bulk metallic glasses with different chemical compositions and initial stored energy, i.e. Zr60Co30Al10 and Zr55Co30Al10Nb5, were fabricated in a hydrogen-induced environment. Dynamic mechanical analysis and nanoindentation tests were carried out to evaluate relaxation behavior and mechanical properties of bulk metallic glasses, respectively. The nanoindentation results indicated declining serrations in load–displacement curves of hydrogen-affected samples. This event was related to the annihilation of localized deformation in hydrogen-affected samples under the external load. Moreover, the dynamic mechanical analysis showed that the hydrogen microalloying process improved the plasticity behavior of metallic glasses by activating fast β′ relaxation. Finally, the results unveiled that the higher initial structural heterogeneity and stored energy in the bulk metallic glass with the alloying composition of Zr55Co30Al10Nb5 led to the improvement of microalloying effects on the corresponding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Li, Y. Shen, M.C. Leu, H.-L. Tsai, Mechanical properties of Zr-based bulk metallic glass parts fabricated by laser-foil-printing additive manufacturing. Mater. Sci. Eng., A 743, 404–411 (2019)

    Article  Google Scholar 

  2. J. Zhou et al., A novel FeNi-based bulk metallic glass with high notch toughness over 70 MPa m1/2 combined with excellent soft magnetic properties. Mater. Des. 191, 108597 (2020)

    Article  Google Scholar 

  3. D. Geissler, M. Uhlemann, A. Gebert, Catastrophic stress corrosion failure of Zr-base bulk metallic glass through hydrogen embrittlement. Corros. Sci. 159, 108057 (2019)

    Article  Google Scholar 

  4. L. McMillon-Brown et al., Measured optical constants of Pd77.5Cu6Si16.5 bulk metallic glass. Opt. Mater. X 1, 100012 (2019)

    Google Scholar 

  5. Q. Wang et al., Ductile Co-based bulk metallic glass with superhigh strength and excellent soft magnetic properties induced by modulation of structural heterogeneity. Materialia 9, 100561 (2020)

    Article  Google Scholar 

  6. F. Sun et al., Shear punching of bulk metallic glasses under low stress. Mater. Des. 190, 108595 (2020)

    Article  Google Scholar 

  7. L. Li, J. Li, Y. He, J. Cao, H. Kou, J. Wang, The cryogenic mechanical property deviation of Ti-based bulk metallic glass composite induced by interstitial element. J. Non. Cryst. Solids 542, 120105 (2020)

    Article  Google Scholar 

  8. S. Jiang et al., In situ study of the shear band features of a CuZr-based bulk metallic glass composite. Intermetallics 112, 106523 (2019)

    Article  Google Scholar 

  9. S. Lin et al., Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex situ and in situ hybrid strategy. J. Mater. Sci. Technol. 50, 128–138 (2020)

    Article  Google Scholar 

  10. S. Gouripriya, P. Tandaiya, Mechanistic origins of work hardening in shape memory alloy particle reinforced ex situ bulk metallic glass matrix composites. Scr. Mater. 185, 1–6 (2020)

    Article  Google Scholar 

  11. W. Guo, J. Saida, M. Zhao, S. Lü, S. Wu, Thermal rejuvenation of an Mg-based metallic glass. Metall. Mater. Trans. A 50(3), 1125–1129 (2019)

    Article  Google Scholar 

  12. H. Zhou, R. Hubek, M. Peterlechner, G. Wilde, Two-stage rejuvenation and the correlation between rejuvenation behavior and the boson heat capacity peak of a bulk metallic glass. Acta Mater. 179, 308–316 (2019)

    Article  ADS  Google Scholar 

  13. M. Samavatian, R. Gholamipour, A.A. Amadeh, S. Mirdamadi, Correlation between plasticity and atomic structure evolution of a rejuvenated bulk metallic glass. Metall. Mater. Trans. A 50(10), 4743–4749 (2019)

    Article  Google Scholar 

  14. C. Ebner, S. Pauly, J. Eckert, C. Rentenberger, Effect of mechanically induced structural rejuvenation on the deformation behaviour of CuZr based bulk metallic glass. Mater. Sci. Eng., A 773, 138848 (2020)

    Article  Google Scholar 

  15. Q. Zhou et al., Enhancing fatigue wear resistance of a bulk metallic glass via introducing phase separation: a micro-impact test analysis. Wear 436–437, 203037 (2019)

    Article  Google Scholar 

  16. D.V. Louzguine-Luzgin et al., Phase separation process preventing thermal embrittlement of a Zr–Cu–Fe–Al bulk metallic glass. Scr. Mater. 167, 31–36 (2019)

    Article  Google Scholar 

  17. J.I. Hyun, C.I. Kim, S.W. Nam, W.T. Kim, D.H. Kim, Nanoscale phase separation and microstructure evolution during crystallization in Al-Si-Ni amorphous alloy. Mater. Des. 192, 108719 (2020)

    Article  Google Scholar 

  18. W. Dandana, M.A. Yousfi, K. Hajlaoui, F. Gamaoun, A.R. Yavari, Thermal stability and hydrogen-induced softening in Zr57Al10Cu15.4Ni12.6Nb5 metallic glass. J. Non Cryst. Solids 456, 138–142 (2017)

    Article  ADS  Google Scholar 

  19. D. Granata, E. Fischer, J.F. Löffler, Effectiveness of hydrogen microalloying in bulk metallic glass design. Acta Mater. 99, 415–421 (2015)

    Article  ADS  Google Scholar 

  20. Y. Zhao et al., Effect of hydrogen on the yielding behavior and shear transformation zone volume in metallic glass ribbons. Acta Mater. 78, 213–221 (2014)

    Article  ADS  Google Scholar 

  21. F. Dong et al., Investigation of shear transformation zone and ductility of Zr-based bulk metallic glass after plasma-assisted hydrogenation. Mater. Sci. Eng., A 759, 105–111 (2019)

    Article  Google Scholar 

  22. L. Tian, D. Tönnies, M. Hirsbrunner, T. Sievert, Z. Shan, C.A. Volkert, Effect of hydrogen charging on pop-in behavior of a Zr-based metallic glass. Metals (Basel) 10(1), 22 (2020)

    Article  Google Scholar 

  23. L.S. Luo et al., Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying. Acta Mater. 171, 216–230 (2019)

    Article  ADS  Google Scholar 

  24. H.-J. Lin et al., Hydrogenation properties of five-component Mg60Ce10Ni20Cu5X5 (X = Co, Zn) metallic glasses. Intermetallics 108, 94–99 (2019)

    Article  Google Scholar 

  25. J. Ding, Y.-Q. Cheng, H. Sheng, M. Asta, R.O. Ritchie, E. Ma, Universal structural parameter to quantitatively predict metallic glass properties. Nat. Commun. 7(1), 13733 (2016)

    Article  ADS  Google Scholar 

  26. B. Wang et al., Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: a molecular dynamics study. J. Mater. Sci. Technol. 45, 198–206 (2020)

    Article  Google Scholar 

  27. F. Dong et al., Effects of hydrogen on the nanomechanical properties of a bulk metallic glass during nanoindentation. Int. J. Hydrogen Energy 42(40), 25436–25445 (2017)

    Article  Google Scholar 

  28. F. Dong et al., Effect of hydrogen addition on the mechanical properties of a bulk metallic glass. J. Alloys Compd. 695, 3183–3190 (2017)

    Article  Google Scholar 

  29. P. Tao, W. Zhang, Q. Tu, Y. Yang, Response of large-deformation behavior to strain rates in a bulk-metallic glass by hydrogen. Int. J. Hydrogen Energy 41(22), 9690–9695 (2016)

    Article  Google Scholar 

  30. M. Samavatian, R. Gholamipour, V. Samavatian, F. Farahani, Effects of Nb minor addition on atomic structure and glass forming ability of Zr55Cu30Ni5Al10 bulk metallic glass. Mater. Res. Express 6(6), 65202 (2019)

    Article  Google Scholar 

  31. F. Meng, K. Tsuchiya, M.J. Kramer, R.T. Ott, Reduction of shear localization through structural rejuvenation in Zr–Cu–Al bulk metallic glass. Mater. Sci. Eng., A 765, 138304 (2019)

    Article  Google Scholar 

  32. T. Burgess, K.J. Laws, M. Ferry, Effect of loading rate on the serrated flow of a bulk metallic glass during nanoindentation. Acta Mater. 56(17), 4829–4835 (2008)

    Article  ADS  Google Scholar 

  33. K.P. Marimuthu, K. Lee, J. Han, F. Rickhey, H. Lee, Nanoindentation of zirconium based bulk metallic glass and its nanomechanical properties. J. Mater. Res. Technol. 9(1), 104–114 (2020)

    Article  Google Scholar 

  34. Y. Sun et al., Predicting complex relaxation processes in metallic glass. Phys. Rev. Lett. 123(10), 105701 (2019)

    Article  ADS  Google Scholar 

  35. W. Dandana, K. Hajlaoui, Effect of hydrogen addition on the mechanical properties of Zr-based metallic glass. J. Alloys Compd. 742, 563–566 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hussein Kadhim Sharaf or Harsha Mohanty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharaf, H.K., Salman, S., Abdulateef, M.H. et al. Role of initial stored energy on hydrogen microalloying of ZrCoAl(Nb) bulk metallic glasses. Appl. Phys. A 127, 28 (2021). https://doi.org/10.1007/s00339-020-04191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04191-0

Keywords

Navigation