Skip to main content
Log in

Increasing Wear Resistance of Copper Electrode in Electrical Discharge Machining by Using Ultra-Fine-Grained Structure

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Tool electrode wear is a severe problem in electrical discharge machining (EDM) which significantly affects the efficiency of the machining process and dimensional accuracy. In this paper, ultra-fine-grained (UFG) structures due to their unique and unusual properties are used to alleviate the wear problem of tool electrode. Equal-channel angular pressing (ECAP) is a novel severe plastic deformation metal forming process which can produce ultra-fine to nanoscale grains in bulk materials. Commercially pure copper was ECAP-ed to produce UFG microstructures and then used as tool electrode in EDM. The performance parameters in the EDM process, which have been studied, are material removal rate (MRR), volumetric electrode wear (VEW) and electrode wear ratio (EWR). For UFG and coarse-grained electrodes, the MRR, VEW and EWR obtained in EDM process have been compared. The results show that VEW and EWR decrease when UFG copper tool electrodes are used. But with increasing machining time, VEW and EWR of UFG copper electrodes approach those of the coarse-grained copper electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rajurkar K P, Sundaram M M, and Malshe A P, Proc CIRP 6 (2013) 13.

    Article  Google Scholar 

  2. VinothKumar S, and PradeepKumar M, Trans Indian Inst Met 70 (2017) 2293.

    Article  CAS  Google Scholar 

  3. Liu C C, Mater Sci Eng A 363 (2003) 221.

    Article  Google Scholar 

  4. Schumacher B M, J Mater Process Technol 149 (2004) 376.

    Article  CAS  Google Scholar 

  5. Guu Y H, Hocheng H, Chou C Y, and Deng C S, Mater Sci Eng A 358 (2003) 37.

    Article  Google Scholar 

  6. Yang X, Guo J, Chen X, and Kunieda M, Precis Eng 35 (2011) 51.

    Article  Google Scholar 

  7. Tsai H C, Yan B H, and Huang F Y, Int J Mach Tools Manuf 43 (2003) 245.

    Article  Google Scholar 

  8. Monzon M, Benítez A N, Marrero M D, Hernandez N, Hernandez P, and Aisa J, J Mater Process Technol 196 (2008) 109.

    Article  CAS  Google Scholar 

  9. Lonardo P M, and Bruzzone AA, CIRP Ann 48 (1999) 123.

    Article  Google Scholar 

  10. Ozgedik A, and Cogun C, Int J Adv Manuf Technol 27 (2006) 488

    Article  Google Scholar 

  11. Song K Y, Park M S, and Chu C N, Precis Eng 37 (2013) 738.

    Article  Google Scholar 

  12. Srivastava V, and Pandey P M, J Manuf Process 15 (2013) 158.

    Article  Google Scholar 

  13. Uhlmann E, and Roehner M, CIRP J Manuf Sci Technol 1 (2008) 92

    Article  Google Scholar 

  14. Khanra A K, Pathak L C, and Godkhindi M M, Bull Mater Sci 32 (2009) 401.

    Article  CAS  Google Scholar 

  15. Li L, Wong Y S, Fuh J Y, and Lu L, Mater Des 22 (2001) 669

    Article  CAS  Google Scholar 

  16. Khanra A K, Sarkar B R, Bhattacharya B, Pathak L C, and Godkhindi M M, J Mater Process Technol 183 (2007) 122.

    Article  CAS  Google Scholar 

  17. Wang J, Wei W, Huang X, Li L, and Pan F, Mater Sci Eng A 529 (2011) 497.

    Article  CAS  Google Scholar 

  18. Heidari S, Bakhshan Y, Khorshidi Mal Ahmadi J, and Afsari A, Modares Mech Eng 19 (2019) 1187

    Google Scholar 

  19. Higuera-Cobos O F, and Cabrera J M, Mater Sci Eng A 571 (2013) 103.

    Article  Google Scholar 

  20. Reihanian M, Ebrahimi R, Tsuji N, and Moshksar M M, Mater Sci Eng A 473 (2008) 189.

    Article  Google Scholar 

  21. Jayakumar P K, Balasubramanian K, and Tagore G R, Mater Sci Eng A 538 (2012) 7.

    Article  CAS  Google Scholar 

  22. Hosseini S A, and Manesh H D, Mater Des 30 (2009) 2911.

    Article  CAS  Google Scholar 

  23. Zhilyaev A P, Shakhova I, Belyakov A, Kaibyshev R, and Langdon T G, Wear 305 (2013) 89

    Article  CAS  Google Scholar 

  24. Kumar S R, Gudimetla K, Mohanlal S, and Ravisankar B, Trans Indian Inst Met 72 (2019) 1437.

    Article  Google Scholar 

  25. Keshtiban P M, Behnagh R A, and Alimirzaloo V, Trans Indian Inst Met 71 (2018) 659.

    Article  CAS  Google Scholar 

  26. Suo T, Li Y, Deng Q, and Liu Y, Mater Sci Eng A 466 (2007) 166.

    Article  Google Scholar 

  27. Habib S S, Appl Math Model 33 (2009) 4397.

    Article  Google Scholar 

  28. Jahan M P, Wong Y S, and Rahman M, J Mater Process Technol 209 (2009) 3956.

    Article  CAS  Google Scholar 

  29. Samuel M P, and Philip P K, Int J Mach Tools Manuf 37 (1997) 1625.

    Article  Google Scholar 

  30. Singh S, Maheshwari S, and Pandey P C, J Mater Process Technol 149 (2004) 272.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the “Iranian Nanotechnology Initiative” in Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Afsari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, S., Afsari, A. & Ranaei, M.A. Increasing Wear Resistance of Copper Electrode in Electrical Discharge Machining by Using Ultra-Fine-Grained Structure. Trans Indian Inst Met 73, 2901–2910 (2020). https://doi.org/10.1007/s12666-020-02091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02091-8

Keywords

Navigation