Skip to main content
Log in

Unraveling the technological performance of low-energy ED-machining for processing Inconel 718 alloy: a comparative study of electrode materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study investigates the impact of different tool electrode materials on the thickness of the resolidified layer produced by sinking electrical discharge machining (SED-machining) on Inconel 718 alloy. The experiments were conducted with various discharge durations and duty factor levels, using an open voltage of 120 V and a discharge current of 2.4 A. Three grades of tool electrode materials were used: graphite (both polarities), copper, and copper-tungsten. The study found that ED-machining performance improved significantly at a duty factor of 0.33, a discharge duration of 24 μs, and a discharge energy of 6.91 mJ. The material removal rate increased to 1.05 mm3/min with the Graphite (−) tool electrode, while the volumetric relative wear improved to 1.66% with the copper-tungsten tool electrode. X-ray diffraction and scanning electron microscopy analyses revealed phase changes, complex carbide formation, and primary dendritic growth in the recast layer due to abrupt thermal gradient changes and material-electrode interactions. The maximum recast layer thickness was 16.52 μm with the graphite (−) tool electrode, while the copper-tungsten tool electrode produced the smoothest surface with the lowest roughness of 1.3 μm. The copper tool electrode yielded the thinnest recast layer at 9.08 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

FLTt :

Flatness using least squares reference plane (μm)

î e :

Discharge current (A)

Pin :

Dielectric inlet pressure (mPa)

Ra :

Average roughness - two-dimensional (μm)

Sa :

Average height of the selected area—three-dimensional (μm)

Sdq :

Root mean square gradient (−)

Sdr :

Developed interfacial area ratio (%)

Sku :

Kurtosis (−)

Smr 2 :

Peak material component, the fraction of the surface which will carry the load (%)

Sp :

Maximum peak height of selected area (μm)

Ssk :

Skewness (−)

Sv :

Maximum valley depth of selected area (μm)

t d :

Ignition delay time, (μs))

t e :

Discharge duration (μs)

t i :

Pulse duration (μs)

t o :

Pulse interval time (μs)

t p :

Pulse cycle time (μs)

û e :

Discharge voltage (V)

V e :

Electrode wear rate (mm3/min)

V w :

Material removal rate (mm3/min)

W e :

Discharge energy (We = ûe.îe.te) (mJ)

ϑ :

Volumetric relative wear (Ve/Vw) (%)

τ :

Duty factor (ti/tp) (−)

References

  1. Mahesh K, Philip JT, Joshi SN, Kuriachen B (2021) Machinability of Inconel 718: a critical review on the impact of cutting temperatures. Mater Manuf Process 36:753–791. https://doi.org/10.1080/10426914.2020.1843671

    Article  Google Scholar 

  2. Suárez A, Veiga F, Polvorosa R et al (2019) Surface integrity and fatigue of non-conventional machined alloy 718. J Manuf Process 48:44–50. https://doi.org/10.1016/j.jmapro.2019.09.041

    Article  Google Scholar 

  3. Ezugwu EO, Wang ZM, Machado AR (1998) The machinability of nickel-based alloys: a review. J Mater Process Technol 86:1–16. https://doi.org/10.1016/S0924-0136(98)00314-8

    Article  Google Scholar 

  4. De Bartolomeis A, Newman ST, Jawahir IS et al (2021) Future research directions in the machining of Inconel 718. J Mater Process Technol 297:117260. https://doi.org/10.1016/j.jmatprotec.2021.117260

    Article  Google Scholar 

  5. Jafarian F (2020) Electro discharge machining of Inconel 718 alloy and process optimization. Mater Manuf Process 35:95–103. https://doi.org/10.1080/10426914.2020.1711919

    Article  Google Scholar 

  6. Czelusniak T, Higa CF, Torres RD et al (2019) Materials used for sinking EDM electrodes: a review. J Brazilian Soc Mech Sci Eng 41:14. https://doi.org/10.1007/s40430-018-1520-y

    Article  Google Scholar 

  7. Jadam T, Datta S, Mahapatra S, Sankar S (2018) Electro-discharge machining of Inconel 718 using square cross sectioned copper tool electrode: studies on topography and metallurgical features of the EDMed work surface. Mater Today Proc 5:4847–4854. https://doi.org/10.1016/j.matpr.2017.12.060

    Article  Google Scholar 

  8. Carlini GC, Amorim FL (2022) Variação do Período de Descargas Elétricas e Retração com Diferentes Materiais de Eletrodo Durante a EDM do Inconel 718. XXIV Colóquio Usinagem 1:5. https://doi.org/10.29327/usinagem.478328

    Article  Google Scholar 

  9. DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66:4095–4103. https://doi.org/10.1063/1.343994

    Article  Google Scholar 

  10. Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J Appl Phys 73:7900–7909. https://doi.org/10.1063/1.353942

    Article  Google Scholar 

  11. Schumacher BM (2004) After 60 years of EDM the discharge process remains still disputed. J Mater Process Technol 149:376–381. https://doi.org/10.1016/j.matprotec.2003.11.060

    Article  Google Scholar 

  12. Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the Process. CIRP Ann 54:64–87. https://doi.org/10.1016/s0007-8506(07)60020-1

    Article  Google Scholar 

  13. Rahul DS, Biswal BB, Mahapatra SS (2019) Machinability analysis of Inconel 601, 625, 718 and 825 during electro-discharge machining: on evaluation of optimal parameters setting. Meas J Int Meas Confed 137:382–400. https://doi.org/10.1016/j.measurement.2019.01.065

    Article  Google Scholar 

  14. Klocke F, König W (2007) Fertigungsverfahren 3. In: Abtragen, Generieren und Lasermaterialbearbeitung. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  15. Amorim FL, Weingaertner WL, Bassani IA (2010) Aspects on the optimization of die-sinking EDM of tungsten carbide-cobalt. J Brazilian Soc Mech Sci Eng 32:496–502. https://doi.org/10.1590/s1678-58782010000500009

    Article  Google Scholar 

  16. Schulze HP (2021) Determining the importance of polarity change in the electrical discharge machining. New Visions Sci Technol 3:76–85. https://doi.org/10.9734/bpi/nvst/v3/12384d

    Article  Google Scholar 

  17. Jadam T, Sahu SK, Datta S, Masanta M (2020) Powder-mixed electro-discharge machining performance of Inconel 718: effect of concentration of multi-walled carbon nanotube added to the dielectric media. Sadhana - Acad Proc Eng Sci 45:1–16. https://doi.org/10.1007/s12046-020-01378-2

    Article  Google Scholar 

  18. Wang J, Liu D, Ding X et al (2020) Microstructure heredity of Inconel 718 nickel-based superalloy during preheating and following deformation. Crystals 10:303. https://doi.org/10.3390/cryst10040303

    Article  Google Scholar 

  19. Li Z, Bai J (2017) Impulse discharge method to investigate the influence of gap width on discharge characteristics in micro-EDM. Int J Adv Manuf Technol 90:1769–1777. https://doi.org/10.1007/s00170-016-9508-1

    Article  Google Scholar 

  20. Davim JP (2010) In: Davim JP (ed) Surface integrity in machining. Springer London, London

    Chapter  Google Scholar 

  21. Kliuev M, Boccadoro M, Perez R et al (2016) EDM drilling and shaping of cooling holes in Inconel 718 turbine blades. Procedia CIRP 42:322–327. https://doi.org/10.1016/j.procir.2016.02.293

    Article  Google Scholar 

  22. Sahu SK, Datta S (2019) Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys: comparison with conventional electro-discharge machining. Proc Inst Mech Eng Part E J Process Mech Eng 233:384–402. https://doi.org/10.1177/0954408918787104

    Article  Google Scholar 

  23. Phipon R, Shivakoti I, Sharma A (2020) Sustainable processing of Inconel 718 super alloy in electrical discharge machining process. World J Eng 17:687–695. https://doi.org/10.1108/WJE-03-2020-0077

    Article  Google Scholar 

  24. Shekar C, Kishore K, Laxminarayana P (2020) Material removal rate and surface roughness on machining of Inconel 718 by electrical discharge machine using Taguchi technique. Mater Today Proc 27:1024–1029. https://doi.org/10.1016/j.matpr.2020.01.372

    Article  Google Scholar 

  25. Tanjilul M, Ahmed A, Kumar AS, Rahman M (2018) A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. J Mater Process Technol 255:263–274. https://doi.org/10.1016/j.jmatprotec.2017.12.016

    Article  Google Scholar 

  26. Dong H, Liu Y, Li M et al (2019) High-speed compound sinking machining of Inconel 718 using water in oil nanoemulsion. J Mater Process Technol 274:116271. https://doi.org/10.1016/j.jmatprotec.2019.116271

    Article  Google Scholar 

  27. Akca E, Gürsel A (2015) A review on superalloys and IN718 nickel-based INCONEL superalloy. Period Eng Nat Sci 3. https://doi.org/10.21533/pen.v3i1.43

  28. Thellaputta GR, Chandra PS, Rao CSP (2017) Machinability of nickel based superalloys: a review. Mater Today Proc 4:3712–3721. https://doi.org/10.1016/j.matpr.2017.02.266

    Article  Google Scholar 

  29. ASM (1990) ASM Handbook. In: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International

    Google Scholar 

  30. Li XZ, Zhou JP, Zhang Y et al (2020) Discharge characteristics of W-Cu electrode in short electrical arc discharge machining of Inconel 718. Int J Adv Manuf Technol 110:2427–2437. https://doi.org/10.1007/s00170-020-06041-y

    Article  Google Scholar 

  31. Zink ES, Bourdon D, Neias Junior V et al (2020) Study of manufacturing processes for liquid rocket turbopump impellers: test and analysis. J Aerosp Technol Manag 12:1–14. https://doi.org/10.5028/jatm.v12.1099

    Article  Google Scholar 

  32. Dong H, Liu Y, Shen Y, Wang X (2016) Optimizing machining parameters of compound machining of Inconel718. Procedia CIRP 42:51–56. https://doi.org/10.1016/j.procir.2016.02.185

    Article  Google Scholar 

  33. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide, 2nd edn. ASM International, Ohio, USA, pp 44073–40002

    Book  Google Scholar 

  34. Zhao Y, Guo Q, Ma Z, Yu L (2020) Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties. Mater Sci Eng A 791:139735. https://doi.org/10.1016/j.msea.2020.139735

    Article  Google Scholar 

  35. Touazine H, Jahazi M, Bocher P (2017) Accurate determination of damaged subsurface layers in machined Inconel 718. Int J Adv Manuf Technol 88:3419–3427. https://doi.org/10.1007/s00170-016-9039-9

    Article  Google Scholar 

  36. Klocke F, Zeis M, Klink A, Veselovac D (2013) Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium- and nickel-based blisks. CIRP J Manuf Sci Technol 6:198–203. https://doi.org/10.1016/j.cirpj.2013.02.008

    Article  Google Scholar 

  37. Mendes LA, Amorim FL, Weingaertner WL (2014) Automated system for the measurement of spark current and electric voltage in wire EDM performance. J Brazilian Soc Mech Sci Eng 37:123–131. https://doi.org/10.1007/s40430-014-0171-x

    Article  Google Scholar 

  38. Carlini GC, Amorim FL, Weingaertner WL (2019) Influence of different grades of CuW electrodes when die sinking ED-machining of cemented carbide. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-03982-x

  39. Ahmed A, Tanjilul M, Rahman M, Kumar AS (2019) Ultrafast drilling of Inconel 718 using hybrid EDM with different electrode materials. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-04769-w

  40. Leone C, Di Siena M, Genna S, Martone A (2022) Effect of graphite nanoplatelets percentage on the in plane thermal diffusivity of ultra-thin graphene based (nanostructured) composite. Opt Laser Technol 146. https://doi.org/10.1016/j.optlastec.2021.107552

  41. Amorim FL, Weingaertner WL (2007) The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J Brazilian Soc Mech Sci Eng 29:366–371. https://doi.org/10.1590/s1678-58782007000400004

    Article  Google Scholar 

  42. ISO (2015) ISO 16610-1. Geometrical product specifications (GPS) — filtration — part 1: overview and basic concepts

  43. ISO (2021) ISO 25178-2. Geometrical product specifications (GPS) — surface texture: areal — part 2: terms, definitions and surface texture parameters

  44. Pagani L, Qi Q, Jiang X, Scott PJ (2017) Towards a new definition of areal surface texture parameters on freeform surface. Meas J Int Meas Confed 109:281–291. https://doi.org/10.1016/j.measurement.2017.05.028

    Article  Google Scholar 

  45. Czifra Á, Barányi I (2020) Sdq-Sdr topological map of surface topographies. Front Mech Eng 6:1–9. https://doi.org/10.3389/fmech.2020.00050

    Article  Google Scholar 

  46. Abhilash PM, Chakradhar D (2022) Multi-response optimization of wire EDM of Inconel 718 using a hybrid entropy weighted GRA-TOPSIS method. Process Integr Optim Sustain 6:61–72. https://doi.org/10.1007/s41660-021-00202-6

    Article  Google Scholar 

  47. Kossman S, Coorevits T, Iost A, Di C (2017) A new approach of the Oliver and Pharr model to fit the unloading curve from instrumented indentation testing. J Mater Res 32:2230–2240. https://doi.org/10.1557/jmr.2017.120

    Article  Google Scholar 

  48. Holmberg J, Berglund J, Wretland A, Beno T (2019) Evaluation of surface integrity after high energy machining with EDM, laser beam machining and abrasive water jet machining of alloy 718. Int J Adv Manuf Technol 100:1575–1591. https://doi.org/10.1007/s00170-018-2697-z

    Article  Google Scholar 

  49. Amorim FL, Weingaertner WL (2005) The influence of generator actuation mode and process parameters on the performance of finish EDM of a tool steel. J Mater Process Technol 166:411–416. https://doi.org/10.1016/j.jmatprotec.2004.08.026

    Article  Google Scholar 

  50. Amorim FL, Stedile LJ, Torres RD et al (2014) Performance and surface integrity of Ti6Al4V after sinking EDM with special graphite electrodes. J Mater Eng Perform 23:1480–1488. https://doi.org/10.1007/s11665-013-0852-0

    Article  Google Scholar 

  51. Mahdieh MS (2020) Recast layer and heat-affected zone structure of ultra-fined grained low-carbon steel machined by electrical discharge machining. Proc Inst Mech Eng Part B J Eng Manuf 234:933–944. https://doi.org/10.1177/0954405419889202

    Article  Google Scholar 

  52. Lamba A, Vipin (2022) Experimental investigation of machining of EN31 Steel in abrasive mixed rotary EDM with graphite and copper electrode. Sadhana - Acad Proc Eng Sci 47. https://doi.org/10.1007/s12046-022-01906-2

  53. Molnar V (2022) Asymmetric height distribution of surfaces machined by hard turning and grinding. Symmetry (Basel) 14:1591. https://doi.org/10.3390/sym14081591

    Article  Google Scholar 

  54. Imran M, Mativenga PT, Gholinia A, Withers PJ (2015) Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int J Adv Manuf Technol 79:1303–1311. https://doi.org/10.1007/s00170-015-6909-5

    Article  Google Scholar 

  55. Wei J, Zhang Y, Dong G et al (2022) Surface integrity of Inconel 718 in electrical discharge grinding. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10400-2

  56. Shen Y, Liu Y, Dong H et al (2017) Surface integrity of Inconel 718 in high-speed electrical discharge machining milling using air dielectric. Int J Adv Manuf Technol 90:691–698. https://doi.org/10.1007/s00170-016-9332-7

    Article  Google Scholar 

  57. Liu P, Hu J, Sun S et al (2019) Microstructural evolution and phase transformation of Inconel 718 alloys fabricated by selective laser melting under different heat treatment. J Manuf Process 39:226–232. https://doi.org/10.1016/j.jmapro.2019.02.029

    Article  Google Scholar 

  58. Ergin N, Ozdemir O, Demirkiran S et al (2015) Synthesis of inconel 718 superalloy by electric current activated sintering. Acta Phys Pol A 127:1100–1102. https://doi.org/10.12693/APhysPolA.127.1100

    Article  Google Scholar 

  59. Wang W, Zhai H, Chen L et al (2016) Preparation and mechanical properties of TiCx–(NiCu)3Al–CuNi2Ti–Ni hybrid composites by reactive pressureless sintering pre-alloyed Cu/Ti3AlC2 and Ni as precursor. Mater Sci Eng A 670:351–356. https://doi.org/10.1016/j.msea.2016.06.021

    Article  Google Scholar 

  60. Beri N, Maheshwari S, Sharma C, Kumar A (2014) Surface quality modification using powder metallurgy processed CuW electrode during electric discharge machining of Inconel 718. Procedia Mater Sci 5:2629–2634. https://doi.org/10.1016/j.mspro.2014.07.524

    Article  Google Scholar 

  61. Lai A, Bhanumurthy K, Kale GB, Kashyap BP (2012) Diffusion characteristics in the Cu–Ti system. Int J Mater Res 103:661–672. https://doi.org/10.3139/146.110685

    Article  Google Scholar 

  62. Copher G, Harimkar S, Rouser K et al (2022) Microstructure effects of the electrical discharge machining drill on aerospace super alloys. Adv Mater Sci Eng 2022. https://doi.org/10.1155/2022/3604722

  63. Kirka MM, Unocic KA, Raghavan N et al (2016) Microstructure development in electron beam-melted Inconel 718 and associated tensile properties. Jom 68:1012–1020. https://doi.org/10.1007/s11837-016-1812-6

    Article  Google Scholar 

  64. Mostafa A, Picazo Rubio I, Brailovski V et al (2017) Erratum: structure, texture and phases in 3D printed IN718 alloy subjected to homogenization and HIP treatments. Metals (Basel) 7:315. https://doi.org/10.3390/met7080315

    Article  Google Scholar 

  65. Jadam T, Rahul DS, Mahapatra SS (2021) Electro-discharge machining (EDM) of superalloy Inconel 718 using triangular cross-sectioned copper tool electrode: emphasis on topography and metallurgical characteristics of the EDMed work surface. Proc Natl Acad Sci India Sect A - Phys Sci 91:123–134. https://doi.org/10.1007/s40010-019-00642-3

    Article  Google Scholar 

  66. Seow CE, Coules HE, Wu G et al (2019) Wire + arc additively manufactured Inconel 718: effect of post-deposition heat treatments on microstructure and tensile properties. Mater Des 183:108157. https://doi.org/10.1016/j.matdes.2019.108157

    Article  Google Scholar 

  67. Erden A, Kaftanoǧlu B (1981) Thermo-mathematical modelling and optimization of energy pulse forms in electric discharge machining (EDM). Int J Mach Tool Des Res 21:11–22. https://doi.org/10.1016/0020-7357(81)90010-X

    Article  Google Scholar 

  68. Holsten M, Koshy P, Klink A, Schwedt A (2018) Anomalous influence of polarity in sink EDM of titanium alloys. CIRP Ann 67:221–224. https://doi.org/10.1016/j.cirp.2018.04.069

    Article  Google Scholar 

  69. Jahan MP, Wong YS, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209:3956–3967. https://doi.org/10.1016/j.jmatprotec.2008.09.015

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Lacerda Amorim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlini, G.C., Blödorn, R., Davis, R. et al. Unraveling the technological performance of low-energy ED-machining for processing Inconel 718 alloy: a comparative study of electrode materials. Int J Adv Manuf Technol 131, 4755–4772 (2024). https://doi.org/10.1007/s00170-024-13334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13334-z

Keywords

Navigation