Skip to main content
Log in

Thermodynamic and Dynamic Study on the Carbon Deposition on an Iron Surface in a C–H–O System

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The C–H–O ternary phase diagrams in equilibrium with graphite were developed to determine the gas compositions and boundaries for graphite formation in 500–900 °C. Thermogravimetric calculation results showed that carbon deposition was favored under the conditions of low temperature, high carbon, and low oxygen potential. The carbon deposition with reduced iron was carried out in a syngas of H2 and CO by thermal gravimetric experiments. The results showed that carbon deposition started at 400 °C, accelerated at 600–800 °C, and stopped at 1000 °C. Carbon deposition was accelerated by the presence of H2, which was increased with the CO ratio in the gas mixture, and depressed by the addition of CO2. The reduced iron with large surface area fabricated the carbon deposition. Cementite (Fe3C) was formed as intermediate that accelerated the carbon deposition rate. The C–H–O ternary phase diagrams in equilibrium with Fe3C were also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Ariyama and M. Sato, ISIJ Int 46 (2006) 1736.

    Article  CAS  Google Scholar 

  2. H. Hamadeh, O. Mirgaux and F. Patisson, Materials 11 (2018) 1865.

    Article  Google Scholar 

  3. R. Béchara, H. Hamadeh, O. Mirgaux and F. Patisson, Materials 11 (2018) 1094.

    Article  Google Scholar 

  4. C. Ramakgala and G. Danha, Procedia Manufacturing 35 (2019) 242.

    Article  Google Scholar 

  5. W.B. Yang, Coal Economic Research 39 (2019) 4.

    Google Scholar 

  6. Z.B. Yang, Y.Y. Zhang, X.G. Wang, Y.W. Zhang, X.G. Lu and W.Z. Ding, Energy Fuels 24 (2010) 785.

    Article  CAS  Google Scholar 

  7. Y.W. Zhang, J.A. Liu, W.Z. Ding and X.G. Lu, Fuel 90 (2011) 324.

    Article  CAS  Google Scholar 

  8. E.A. Mousa, A. Babich and D. Senk, Steel Res Int 84 (2013) 1085.

    Article  CAS  Google Scholar 

  9. I.J. Moon, C.H. Rhee and D.J. Min, Steel Res 69 (1998) 302.

    Article  CAS  Google Scholar 

  10. K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymanski and T. Wiltowski, Int. J. Hydrog Energy 30 (2005) 1543.

    Article  CAS  Google Scholar 

  11. F. Bonnet, F. Ropital, Y. Berthier and P. Marcus, Corros 54 (2003) 870.

    CAS  Google Scholar 

  12. H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno and Y. Homma, Nano Lett 8 (2008) 2082.

    Article  CAS  Google Scholar 

  13. R. Sharma, E. Moore and P. Rez, Nano Lett 9 (2009) 689.

    Article  CAS  Google Scholar 

  14. L. Pellegrino, M. Daghetta, R. Pelosato, A. Citterio and C.V. Mazzocchia, Chem Eng 32 (2013) 739.

    Google Scholar 

  15. M. Sadri, K. Vakhshouri and M. Hashemi, Ironmak Steelmak 34 (2007) 115.

    Article  CAS  Google Scholar 

  16. R.B. Cahyono, A.N. Rozhan, N. Yasuda, T. Nomura, S. Hosokai, Y. Kashiwaya and T. Akiyama, Fuel Process Technol 113 (2013) 84.

    Article  CAS  Google Scholar 

  17. R.B. Cahyono, N. Yasuda, T. Nomura and T. Akiyama, Fuel Process Technol 119 (2014) 272.

    Article  CAS  Google Scholar 

  18. Z.B. He, J.L. Maurice, A. Gohier, C.S. Lee, D. Pribat and C.S. Cojocaru, Chem Mater 23 (2011) 5379.

    Article  CAS  Google Scholar 

  19. X.F. Feng, S.W. Chee, R. Sharma, K. Liu, X. Xie, Q.Q. Li, S.Q. Fan and K.L. Jiang, Nano Res 4 (2011) 767.

    Article  CAS  Google Scholar 

  20. O.C. Carneiro, N.M. Rodriguez and R.T.K. Baker, Carbon 43 (2005) 2389.

    Article  CAS  Google Scholar 

  21. B.H. Yue, L.H. Kong, X.G. Wang, X.G. Lu and W.Z. Ding, Chin J Catal 31 (2010) 218.

    CAS  Google Scholar 

  22. A.H. Fakeeha, S.O. Kasim, A.A. Ibrahim, A.E. Abasaeed and A.S. Al-Fatesh, Materials 12 (2019) 1777.

    Article  CAS  Google Scholar 

  23. S.A. Theofanidis, V.V. Galvita, C. Konstantopoulos, H. Poelman and G. Marin, Materials 11 (2018) 831.

    Article  Google Scholar 

  24. M.J. Behr, E.A. Gaulding, K.A. Mkhoyan and E.S. Aydil, J Appl Phys 108 (2010) 53303.

    Article  Google Scholar 

  25. S.H. Geng, W.Z. Ding, S.Q. Guo, X.L. Zou, Y.W. Zhang and X.G. Lu, Ironmak Steelmak 42 (2015) 714.

    Article  CAS  Google Scholar 

  26. S.R.K. Nekouei, A.P. Soleymani and M. Panjepour, Miner. Process. Extr Metall Rev 34 (2013) 176.

    Article  CAS  Google Scholar 

  27. H.J. Grabke, ISIJ Int 41 (2001) S1.

    Article  CAS  Google Scholar 

  28. H.J. Grabke, Mater Corros 5 (2003) 736.

    Article  Google Scholar 

  29. K. Sato, T. Noguchi, T. Miki, Y. Sasaki and M. Hino, ISIJ Int 51 (2011) 1269.

    Article  CAS  Google Scholar 

  30. J.W. Snoeck, G. Froment and M. Fowles, J Catal 169 (1997) 240.

    Article  CAS  Google Scholar 

  31. S. McCaldin. M. Bououdina, D.M. Grant and G.S. Walker, Carbon 44 (2006) 2273.

  32. D.H. Kuo and M.Y. Su, Surf Coat Tech 201 (2007) 9172.

    Article  CAS  Google Scholar 

  33. E.T. Turkdogan and J.V. Vinters, Metall Trans B 5 (1974) 11.

    CAS  Google Scholar 

  34. C.T. Wirth, B.C. Bayer, A.D. Gamalski, S. Esconjauregui, R.S. Weatherup and C. Ducati, Chem Mater 24 (2012) 4633.

    Article  CAS  Google Scholar 

  35. X.H. Huang, Principles of Iron and Steel Metallurgy, Beijin: Metallurgical Industry Press (2013) 350.

    Google Scholar 

  36. N.M. Hwang, J.H. Hahn and G.W. Bahn, Diam. Relat Mater3 (1993) 163.

  37. L.M. Aparicio, J Catal 165 (1997) 262.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (No. 51974181), the Iron and Steel Joint Research Fund of National Natural Science Foundation and China Baowu Steel Group Corporation Limited (Grant Nos. U1860203; U1860108), China Postdoctoral Science Foundation (Grant No. 2019M661462), the Shanghai Post-doctoral Excellence Program (Grant No. 2018079). The authors also thank the Shanghai Rising-Star Program (19QA1403600), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (TP2019041) and the CAS Interdisciplinary Innovation Team for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangshi Li, Xionggang Lu or Weizhong Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, S., Chen, Z., Li, G. et al. Thermodynamic and Dynamic Study on the Carbon Deposition on an Iron Surface in a C–H–O System. Trans Indian Inst Met 73, 2841–2850 (2020). https://doi.org/10.1007/s12666-020-02086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02086-5

Keywords

Navigation