Skip to main content
Log in

Fretting Wear Properties of Thermally Deformed Inconel 625 Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of microstructure on fretting wear behavior of Inconel 625 alloy was studied after different thermal deformation conditions (strain rate and temperature). The results show that grain size and microhardness have a significant influence on the fretting wear. As thermal deformation temperature increases and strain rate decreases, grain size increases and microhardness decreases. The oxide formed on the surface of Inconel 625 helps to reduce wear, but oxidative wear is the main wear mechanism. In the thermal deformation temperature range of 900–1000 °C and strain rate of 0.1–1 s−1, grain size is less than 4.5 μm, and the hardness is greater than 252.9 HV. Under these conditions, the coefficient of friction is the highest and the wear volume is the lowest. This paper proposes to improve the fretting wear resistance of the workpiece by adjusting the strain rate and temperature during the thermal deformation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. McCarley J, Alabbad B, and Tin S, Metall Mater Trans A 49 (2018) 1615.

    Article  CAS  Google Scholar 

  2. Guo L G, Li D, Yang H, Zhang J, and Zhang W D, Trans Nonferrous Metals Soc China 26 (2016) 1902.

    Article  CAS  Google Scholar 

  3. Zhu M H, and Zhou Z R, Tribol Int 44 (2011) 1378.

    Article  Google Scholar 

  4. Rybiak R, Fouvry S, and Bonnet B, Wear 268 (2010) 413.

    Article  CAS  Google Scholar 

  5. Zheng J F, Luo J, Mo J L, Peng J F, Jin X S, and Zhu M H, Tribol Int 43 (2010) 906.

    Article  CAS  Google Scholar 

  6. Lin Y C, He D G, Chen M S, Chen X M, Zhao C Y, Ma X, and Long Z L, Mater Des 97 (2016) 13.

    Article  CAS  Google Scholar 

  7. Zhou Z R, Sauger E, Liu J J, and Vincent L, Wear 212 (1997) 50.

    Article  CAS  Google Scholar 

  8. Sauger E, Ponsonnet L, Martin J M, and Vincent L, Tribol Int 33 (2000) 743.

    Article  CAS  Google Scholar 

  9. Diomidis N, and Mischler S, Tribol Int 44 (2011) 1452.

    Article  CAS  Google Scholar 

  10. Ramesh R, and Gnanamoorthy R, Mater Des 28 (2007) 1447.

    Article  CAS  Google Scholar 

  11. Iwabuchi A, Wear 106 (1985) 163.

    Article  CAS  Google Scholar 

  12. Lavella M, and Botto D, Wear 271 (2011) 1543.

    Article  CAS  Google Scholar 

  13. Mi X, Cai Z B, Xiong X M, Qian H, Tang L C, Xie Y C, Peng J F, and Zhu M H, Tribol Int 100 (2016) 400.

    Article  CAS  Google Scholar 

  14. Mi X, Wang W X, Xiong X M, Qian H, Tang L C, Xie Y C, Peng J F, Cai Z B, and Zhu M H, Wear 328–329 (2016) 582.

    Google Scholar 

  15. Pearson S R, Shipway P H, Abere J O, and Hewitt R A A, Wear 303 (2013) 622.

    Article  CAS  Google Scholar 

  16. Sikdar K, Shekhar S, and Balani K, Wear 318 (2014) 177.

    Article  CAS  Google Scholar 

  17. Wang Y J, Zhao S X, Jia Z, Ji J J, Liu D X, Guo T B, and Ding Y T, Adv Mater Sci Eng 20 (2020) 1.

    Google Scholar 

  18. Li D F, Wu Z G, Guo S L, Peng H J, and Hu J, Rare Metal Mater Eng 41 (2012) 1026.

    Article  CAS  Google Scholar 

  19. Jia Z, Gao Z X, Ji J J, Liu D X, Guo T B, and Ding Y T, Materials 12 (2019) 510.

    Article  CAS  Google Scholar 

  20. Yu H Y, Cai Z B, Zhou Z R, and Zhu M H, Wear 259 (2005) 910.

    Article  CAS  Google Scholar 

  21. Xin L, Wang Z H, Li J, Lu Y H, and Shoji T, Mater Charact 115 (2005) 32.

    Article  Google Scholar 

  22. Detrois M, Antonov S, Tin S, Jablonski P D, and Hawk J A, Mater Charact 157 (2019) 109915.

    Article  CAS  Google Scholar 

  23. Ammouri A H, Kridli G, Ayoub G, and Hamade R F, Mater Process Technol 222 (2015) 301.

    Article  CAS  Google Scholar 

  24. Wang Q Q, Liu Z Q, Wang B, Song Q H, and Wan Y, Int J Adv Manuf Technol 82(2016) 1725.

    Article  Google Scholar 

  25. Hong J K, Kim I S, Park C Y, and Kim E S, Wear 259 (2005) 349.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 51665032), Science Foundation for Distinguished Young Scholars of Gansu Province (Grant No. 18JR3RA134), and Lanzhou University of Technology Support plan for Excellent Young Scholars (Grant No. CGZH001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Wang, Y., Ji, J. et al. Fretting Wear Properties of Thermally Deformed Inconel 625 Alloy. Trans Indian Inst Met 73, 2829–2839 (2020). https://doi.org/10.1007/s12666-020-02085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02085-6

Keywords

Navigation