Skip to main content
Log in

Effect of Oxide Bifilms on the Fracture Behavior of AM60B Mg Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of entrained Mg oxide bifilms on the tensile properties and fracture behavior of AM60B Mg alloy was studied. For this purpose, tensile specimens were prepared at different melt temperatures (670, 685, and 700 °C) and holding times (5, 10, and 15 min). According to the results, preparing the samples under non-optimal melting conditions increased the volume fraction of oxide bifilms and bifilm-related defects in the microstructure which reduced the tensile properties. The best tensile properties were obtained in the sample poured at 685 °C after holding for 10 min in the furnace in which the lowest amount of inclusions/bifilms was observed. The microstructural evaluations and fractography analyses showed that the most relevant bifilm-related mechanisms deteriorating the tensile properties were the reduction in the effective load-bearing cross section, facilitated formation of gas/shrinkage porosities, and increased nucleation of microcracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tong X, You G, Liu Y, Long S, and Liu Q, J Mater Proc Tech271 (2019) 271.

    Article  CAS  Google Scholar 

  2. Emadi P, Vandersluis E, and Ravindran C, Trans Indian Inst Metals71 (2018) 2771.

    Article  CAS  Google Scholar 

  3. Tan Q, Atrens A, Mo N, and Zhang M X, Corr Sci112 (2016) 734.

    Article  CAS  Google Scholar 

  4. Űnal O, and Tiryakioğlu M, Mater Sci Eng A643 (2015) 51.

    Article  Google Scholar 

  5. Sin S L, Elsayed A, and Ravindran C, Int Mater Rev58 (2013) 419.

    Article  Google Scholar 

  6. Kitahara Y, Shimazaki H, Yabu T, Noguchi H, Sakamoto M, and Ueno H, Mater Sci Forum482 (2005) 359.

    Article  CAS  Google Scholar 

  7. Czerwinski F, Int Mater Rev60 (2015) 264.

    Article  CAS  Google Scholar 

  8. Balar M J, Patel J B, and Fan Z, Metals131 (2016) 1.

    Google Scholar 

  9. Shevidi A H, Taghiabadi R, and Razaghian A, Trans Nonferrous Met Soc China28 (2018) 20.

    Article  CAS  Google Scholar 

  10. Francis L F, Materials Processing: A Unified Approach to Processing of Metals, Ceramics, and Polymers, Academic Press, Elsevier, Amsterdam (2016), p 105.

    Book  Google Scholar 

  11. Li X, Xiong S M, and Guo Z, Mater Sci Eng A647 (2016) 497.

    Google Scholar 

  12. Gopalan R, and Prabhu N K, Mater Sci Tech27 (2011) 1757.

    Article  CAS  Google Scholar 

  13. El-Sayed M A, Hassanin H, and Essa K, Int J Adv Manuf Tech86 (2016) 1173.

    Article  Google Scholar 

  14. Griffiths W D, and Lai N W, Metall Mater Trans A38 (2007) 190.

    Article  Google Scholar 

  15. Wang L, Rhee H, Felicelli S D, Sabau A S, and Berry J T, in Proceedings 3rd International Symposium on Shape Casting, (eds) Campbell J, Crepeau P N, and Tiryakioǧlu M (2009), p 123.

  16. Campbell J, AIMS Mater Sci3 (2016) 1436.

    Article  CAS  Google Scholar 

  17. Peng L, Zeng G, Su T C, Yasuda H, Nogita K, and Gourlay C M, JOM71 (2019) 2235.

    Article  CAS  Google Scholar 

  18. Mackie D, Robson J D, Withers P J, and Turski M, Mater Charact104 (2015) 116.

    Article  CAS  Google Scholar 

  19. Standard Methods of Tension Testing Wrought and Cast Aluminum and Mg Alloy Products, ASTM B557M-10, Annual Book of ASTM Standards, American Society for Testing and Materials (2010).

  20. Kiełbus A, and Rzychoń T, Mater Sci Forum690 (2011) 214.

    Article  Google Scholar 

  21. Chelliah N M, Kumar R, Singh H, and Surappa M K, J Magnes Alloy5 (2017) 35.

    Article  CAS  Google Scholar 

  22. Habashi F, Alloys: Preparation, Properties, Applications, Wiley, Weinheim (1998).

    Book  Google Scholar 

  23. Hua Q, Gao D, Zhang Y, and Zhang Q, Mater Sci Eng A444 (2007) 69.

    Article  Google Scholar 

  24. Yim C D, You B, Jang R S, and Lim S G, J Mater Sci41 (2006) 2347.

    Article  CAS  Google Scholar 

  25. Zhang Q, Sun D, Pan S, and Zhu M, Int J Heat Mass Transf146 (2020) 118838.

    Article  CAS  Google Scholar 

  26. El-Sayed M A, and Griffiths W D, Int J Cast Met Res27 (2014) 282.

    Article  CAS  Google Scholar 

  27. Campbell J, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques, and Design, Butterworth-Heinemann, Oxford (2011).

    Google Scholar 

  28. Peters A T, US Patent 3123467 (1964).

  29. Gyarmati G, Fegyverneky G, Mende T, and Tokar M, Mater Charact157 (2019) 109925.

    Article  CAS  Google Scholar 

  30. Dispinar D, and Campbell J, Mater Sci Eng A528 (2014) 3860.

    Article  Google Scholar 

  31. Gerrard A J, and Griffiths W D, in Proceedings 5th International Symposium on Shape Casting (2004), p 269.

Download references

Acknowledgements

The authors would like to thank Magnesium-Gostar Arish Company, Qazvin, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Taghiabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghiabadi, R., Shevidi, A.H., Razaghian, A. et al. Effect of Oxide Bifilms on the Fracture Behavior of AM60B Mg Alloy. Trans Indian Inst Met 73, 275–283 (2020). https://doi.org/10.1007/s12666-019-01841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01841-7

Keywords

Navigation