Skip to main content
Log in

Surface Characteristics and Distortion Analysis of the Case-Hardened Helical Gears: A Comparison of Different Case-Hardening Treatments

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the effect of different case-hardening treatments on microstructure, hardness distribution, surface roughness parameters, and dimensional changes was investigated for helical-toothed gears made of 16MnCr5 and 21NiCrMo2 steels. Gas carburizing, gas carburizing–double quenching, low-pressure carburizing, and plasma-nitriding treatments were performed as case-hardening processes. The surface characteristics and distortion analyses of the case-hardened helical gears were examined using an optical microscope, hardness tester, profilometer, and micrometer. In order to ensure adequate pitting and bending strength, the required minimum effective case depth and minimum total case depth values were provided by the performed case-hardening treatments. In the gears, the largest dimensional increase after the heat treatments occurred at the end of the gas carburizing due to the long treatment times at high processing temperatures. The surface roughness values obtained through all performed case-hardening treatments necessitated the finishing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fernandes C M C G, Battez A H, González R, Monge R, and Viesca J L, García A, Martins R C, and Seabra J H O, Tribol Int90 (2015) 306. https://doi.org/10.1016/j.triboint.2015.04.037.

    Article  CAS  Google Scholar 

  2. Dengo C, Meneghetti G, and Dabalà M, Int J Fatigue80 (2015) 145. https://doi.org/10.1016/j.ijfatigue.2015.04.015.

    Article  CAS  Google Scholar 

  3. Savaria V, Monajati H, Bridier F, and Bocher P, J Mater Process Technol220 (2015) 113. https://doi.org/10.1016/j.jmatprotec.2014.12.009.

    Article  Google Scholar 

  4. Hippenstiel F, Bleck W, Clausen B, Hoffmann F, Kohlmann R, and Pouteau P, Härterei-Technische Mitteilungen57 (2002) 290.

    CAS  Google Scholar 

  5. ANSI/AGMA 2004-B89, Amerıcan National Standard, Gear Materials and Heat Treatment Manual, American Gear Manufacturers Association (1989).

  6. Krauss G, Microstructures and Properties of Carburized Steel, in Heating, ASM Handbook, ASM International, Materials Park, Ohio (1991), p 363.

    Google Scholar 

  7. Davis J R, Surface Hardening of Steels: Understanding the Basics, ASM International, Materials Park (2002), p 91.

    Google Scholar 

  8. Poor R P, Barbee W, and Brug J E, US Patent No. 7, 267, 793 B2, United States Patent Application Publication (2007).

  9. Cho J R, Kang W J, Kim M G, Lee J H, Lee Y S, and Bae W B, J Mater Process Technol153–154 (2004) 476. https://doi.org/10.1016/j.jmatprotec.2004.04.131.

    Article  Google Scholar 

  10. Garcia Navas V, Gonzalo O, Quintana I, and Pirling T, Mater Sci Eng A528 (2011) 5146. https://doi.org/10.1016/j.msea.2011.03.004.

    Article  CAS  Google Scholar 

  11. Józwiak W K, Góralski J, Maniecki T P, Kula P, and Pietrasik R, Chem Eng, 82 (2003) 710.

    Google Scholar 

  12. ASTM E92, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, PA (2017).

  13. Kutay MG, http://www.guven-kutay.ch/disliler/12_00_disliler_genel.pdf, (accessed 10 August 2019).

  14. ANSI/AGMA 2001-D04, Amerıcan National Standard, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth, American Gear Manufacturers Association (2004).

  15. Smith E H, Mechanical Engineer’s Reference Book, Butterworth Heinemann, Oxford (1998).

    Google Scholar 

  16. Kardonina NI, Yurovskikh AS, and Kolpakov A S, Met Sci Heat Treat + 52 (2011) 457. https://doi.org/10.1007/s11041-010-9301-y.

    Article  CAS  Google Scholar 

  17. Kula P, Pietrasik R, and Dybowski K, J Mater Process Technol164–165 (2005) 876. https://doi.org/10.1016/j.jmatprotec.2005.02.145.

    Article  CAS  Google Scholar 

  18. Radzevich S P, Dudley’s Handbook of Practical Gear Design and Manufacture, CRC Press, Boca Raton (2012), p 309.

  19. Tobie T, Hippenstiel F, and Mohrbacher H, Metals7 (2017) 415. https://doi.org/10.3390/met7100415.

    Article  CAS  Google Scholar 

  20. Blawert C, Mordike B L, Huchel U, Stramke S, Collins G A, Short K T, and Tendys J, Surf Coat Technol98 (1998) 1181. https://doi.org/10.1016/S0257-8972(97)00232-6.

    Article  CAS  Google Scholar 

  21. Wang Q, Zhang L, and Shen H, Surf Coat Technol 205 (2010) 2654. https://doi.org/10.1016/j.surfcoat.2010.10.031.

    Article  CAS  Google Scholar 

  22. Sun W, and Lancaster A J, Surface Texture Measurements of Gear Surfaces Using Stylus Instruments, National Physical Laboratory, Good Practice Guide No:147 (2017).

  23. Randak A, and Eberbach R, HTM Härterei-Technische Mitteilungen24 (1969) 201.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Yazıcı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gençoğlu, S., Yazıcı, A. Surface Characteristics and Distortion Analysis of the Case-Hardened Helical Gears: A Comparison of Different Case-Hardening Treatments. Trans Indian Inst Met 73, 119–126 (2020). https://doi.org/10.1007/s12666-019-01810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01810-0

Keywords

Navigation