Skip to main content

Advertisement

Log in

Fabrication and Investigation of MCMB–LiNi0.5Mn1.5O4Pouch Cells for High Energy Density Lithium-Ion Batteries: Indigenous Efforts and Challenges for Realization

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, we have fabricated indigenous 300 mAh lithium-ion rechargeable pouch cells using laboratory made LiMn1.5Ni0.5O4 cathode and commercial meso carbon micro-beads anode. Required mass balancing was performed to yield pouch cell of 300 mAh capacity at C/4 rate. When charged and discharged at C/4 and C/3 rates the fabricated pouch cells retained ~ 79% of their capacities after 50 cycles. Post-mortem analysis of the cycled pouch cell indicated the dissolution of Mn and Ni from cathode and deposition of the same at anode and separator. The observed bulging of the cycled pouch cell could be due to evolution of gases through chemical decomposition of conventional organic electrolyte. Though active material dissolution and gas evolution might reduce deliverable capacity and operating voltage of the fabricated pouch cells, yet the reported electrochemical characteristics were far superior to many of the existing literature reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cairns E J and Albertus P, Annu Rev Chem Biomol Eng 1(2010) 299.

    Article  Google Scholar 

  2. Gitzendanner R, Puglia F, Martin C, Carmen D, Jones E and Eaves S, J Power Sources 36 (2004) 416.

    Article  Google Scholar 

  3. Park O K, Cho Y, Lee S, Yoo H–C, Song H-K and Cho J, Energy Environ Sci 4 (2011) 1621.

    Article  Google Scholar 

  4. Nieto S, Majumder S B and Katiyar RS, J Power Sources 136 (2004) 88.

    Article  Google Scholar 

  5. Yoon Y K, Park C W, Ahn H Y, Kim D K, Lee Y S and Kim J, J Phy&Chem of Solids 68 (2007) 780.

    Article  Google Scholar 

  6. Hu M, Pang X and Zhou Z, J Power Sources 237 (2013) 229.

    Article  Google Scholar 

  7. Goodenough J B and Kim Y, J Power Sources 196 (2011) 6688.

    Article  Google Scholar 

  8. Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Cras F L, Jouannaeau S and Martinet S, J Power Sources 189 (2009) 344.

    Article  Google Scholar 

  9. Nisar U, Amin R, Essehli R, Shakoor RA, Kahraman R, Kim DK, Khalil M A and Belharouak I, J. Power. Sources, 396 (2018) 774.

    Article  Google Scholar 

  10. Browning J F, Baggetto L, Jungjohann K L, Wang Y, Tenhaeff W E, Keum J K, Wood III D L, Veith GM, ACS Appl. Mater. Interfaces 6 (2014) 18569.

    Article  Google Scholar 

  11. Yi T-F, Mei J and Zhu Y-R, J Power Sources 316 (2016) 85.

    Article  Google Scholar 

  12. Ma J, Hu P, Cui G, and Chen L, Chem Mater 28 (2016) 3578.

    Article  Google Scholar 

  13. Nguyen B P N, Mariage N, Fredon R, Kelder E M and Lestriez B, J Electrochem Soc 162 (2015) A1451.

    Article  Google Scholar 

  14. Kim Y, Dudney N J, Chi M, Martha S K, Nanda J, Veith G M and Liang C, J Electrochem Soc 160 (2013) A3113.

    Article  Google Scholar 

  15. Chen Z, Zhao R, Du P, Hu H, Wang T, Zhu L and Chen H, J Mater Chem A 2 (2014) 12835.

    Article  Google Scholar 

  16. Kunduraci M and Amatucci G G, Electrochem Acta 53, (2008) 4193.

    Article  Google Scholar 

  17. Lee E, and Persson K A, Nanotechnology 24 (2013) 424007.

    Article  Google Scholar 

  18. Liu H, Wang J, Zhang X, Zhou D, Qi X, Qiu B, Fang J, Kloepsch R, Schumacher G, Liu Z and Li J, Appl Mater Interfaces 8 (2016) 4661.

    Article  Google Scholar 

  19. Chen Z, Zhao R, Du P, Hu H, Wang T, Zhu L and Chen H, J Mater Chem A 2 (2014) 12835.

    Article  Google Scholar 

  20. Hari B, Shukla A K, Duncan H, and Chen G Y, J Mat Chem A 1 (2013) 759.

    Google Scholar 

  21. Shin D W, Bridges C A, Huq A, Paranthaman M P and Manthiram A, J Mater Chem A 1 (2013) 15334.

    Google Scholar 

  22. Nieto S, Majumder S B and Katiyar R S, J Power Sources 136 (2004) 88.

    Article  Google Scholar 

  23. Liu J and Manthiram A, J PhysChem C 113 (2009) 15073.

    Google Scholar 

  24. Mauger A and Julien C M, Ionics 20 (2014) 751.

    Article  Google Scholar 

  25. Hu L, Zhang Z C and Amine K, Electrochem Commun 35 (2013) 76.

    Article  Google Scholar 

  26. Amdouni N, Zaghib K, Gendron F, Mauger A and Julien C M, Ionics 12 (2006) 117.

    Article  Google Scholar 

  27. Liu G, Kong X and Wang B, J Electrochem Soc 161 (2014) A742.

    Article  Google Scholar 

  28. Trask S E, Li Y, Kubal J J, Bettge M, Poltzin B J, Zhu Y, Jansen A N and Abraham D P, J Power Sources 259 (2014) 233.

    Article  Google Scholar 

  29. Manthiram A, Chemelewski K, and Lee E-S, Energy Environ Sci 7 (2014) 1339.

    Article  Google Scholar 

  30. Talyosef Y, Markovsky B, Salitra G, Aurbach D, Kim H-J and Choi S, J Power Sources 146 (2005) 664.

    Article  Google Scholar 

  31. Huang J, Liu H, Zhou N, An K, Meng Y S, Luo J, ACS Appl Mater Interfaces 9, (2017) 36745.

    Article  Google Scholar 

  32. Xia L, Xia Y, Wang C, Hu H, Lee S, Yu Q, Chen H, Liu Z., Chem. Electro. Chem. 2 (2015) 1707.

    Google Scholar 

  33. Julien C M and Mauger A, Ionics 19 (2013) 951.

    Article  Google Scholar 

  34. Leitner K W, Wolf H, Garsuch A, Chesneau F and Schulz-Dobrick M, J Power Sources 244 (2013) 548.

    Article  Google Scholar 

  35. Arrebola J C, Caballero A, Hernan L and Morales J, J Power Sources 183 (2008) 310.

    Article  Google Scholar 

  36. Wang H, Xie X, Wei X, Zhang X, Zhang J, Huang Y and Li Q, Appl. Mater Interfaces 9 (2017) 33274.

    Article  Google Scholar 

  37. Zhang S S, Front Energy Res 5 (2014) 1.

    Article  Google Scholar 

  38. Pieczonka N P W, Liu Z, Lu P, Olson K L, Moote J, Powel B R and Kim J H, J Phys Chem C 117 (2013) 15947.

    Article  Google Scholar 

  39. Yoon T, Park S, Mun J, Ryu J H, Choi W and Kang Y-S, J Power Sources 215 (2012) 312.

    Article  Google Scholar 

  40. Lu D S, Yuan L B, Li J L, Huang R Q, Guo J H and Cai Y P, J Electroanal Chem 758 (2015) 33.

    Article  Google Scholar 

  41. Arora P, White R E and Doyle M, J Electrochem Soc 145 (1998) 3647.

    Article  Google Scholar 

Download references

Acknowledgement

One of the Authors (Kirtan Sahoo) would like to thank Dr. O. R. Nandagopan, Director, NSTL, Visakhapatnam for his support during this work. S. B. Majumder wishes to acknowledge partial financial support through IMPRINT Project supported by MHRD and DRDO (vide F.No.:3-18/2015-T.S.-I (vol.IV) dated 17-05-2017). One of the authors (Mr Kirtan Sahoo) would like to thank Mr. Arijit Mitra for fruitful discussion in preparing the revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Majumder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, K., Prasad, G.D., Jagdish, K. et al. Fabrication and Investigation of MCMB–LiNi0.5Mn1.5O4Pouch Cells for High Energy Density Lithium-Ion Batteries: Indigenous Efforts and Challenges for Realization. Trans Indian Inst Met 72, 2091–2103 (2019). https://doi.org/10.1007/s12666-019-01607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01607-1

Keywords

Navigation