Skip to main content
Log in

Experimental Investigation of Novel Enhanced Gravity Closed Spiral Classifier

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Classifiers have found wide applications in the mineral processing industry. In this study, a novel enhanced gravity closed spiral classifier is presented. This device uses induced centrifugal force to classify particles. A functional prototype of the separator was 3D printed to experimentally validate the concept. The performance characteristics of the classifier were established by conducting experiments under different process and design conditions. Silica slurries with particle loading of 5–15 wt% were used in this work as a model system. The particle size distribution analysis was performed using laser scattering particle size distribution analyser (LSPSDA). The effects of particle loading, velocity of feed stream, and number of turns of spiral were explored. The equipment could be used in many applications ranging from size (mass) classification to disposing of unwanted gangue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu L, Iron Ore: Mineralogy, Processing and Environmental Sustainability, Woodhead Publishing, Cambridge (2015).

    Google Scholar 

  2. Pradip, Int J Miner Met Mater Eng 59 (2006) 551.

    Google Scholar 

  3. Svarovsky L, SolidLiquid Separation, Butterworth–Heinemann, Oxford (2000) p 1.

    Google Scholar 

  4. Davailles A, Climent E, and Bourgeois F, Sep Purif Technol 92 (2012) 152.

    Article  Google Scholar 

  5. Banerjee C, Climent E, and Majumder A K, Chem Eng Sci 152 (2016) 724.

    Article  Google Scholar 

  6. Reay D, Ramshaw C, and Harvey A, Process Intensification: Engineering for Efficiency, Sustainability and Flexibility, Butterworth–Heinemann, Oxford (2013).

    Book  Google Scholar 

  7. Richards R G, Hunter D M, Gates P J, and Palmer M K, Miner Eng 13 (2000) 65.

    Article  Google Scholar 

  8. Burt R O, and Mills C, Gravity Concentration Technology, Elsevier, Amsterdam (1984) p 226.

    Google Scholar 

  9. Kapur P C, and Meloy T P, Int J Miner Process 53 (1998) 15.

    Article  Google Scholar 

  10. Kapur P C, and Meloy T P, Powder Technol 102 (1999) 244.

    Article  Google Scholar 

  11. Bazin C, Sadeghi M, and Renaud M, Miner Eng 91 (2016) 74.

    Article  Google Scholar 

  12. Doheim M A, Abdel Gawad A F, Mahran G M A, Abu Ali M H, and Rizk A M, Appl Math Model 37 (2013) 198.

    Article  Google Scholar 

  13. Dixit P, Tiwari R, Mukherjee A K, and Banerjee P K, Powder Technol 275 (2015) 105.

    Article  Google Scholar 

  14. Sadeghi M, Bazin C, and Renaud M, Int J Miner Process 153 (2016) 51.

    Article  Google Scholar 

  15. Hseih K T, and Rajamani K, AIChE J 37 (1991) 735.

    Article  Google Scholar 

  16. Hseih K T, and Rajamani K, Int J Miner Process 22 (1988) 223.

    Article  Google Scholar 

  17. Vega-Garcia D, Brito-Parada P R, and Cilliers J J, Chem Eng J 350 (2018) 653.

    Article  Google Scholar 

  18. Delgadillo J A, and Rajamani K R, Int J Miner Process 84 (2007) 252.

    Article  Google Scholar 

  19. Yang Q, Wang H L, Liu Y, and Li Z, Sep Purif Technol 74 (2010) 271.

    Article  Google Scholar 

  20. Ghodrat M, Kuang S B, Yu A B, Vince A, Barnett G D, and Barnett P J, Miner Eng 62 (2014) 74.

    Article  Google Scholar 

  21. Vakamalla T R, Kumbhar K S, Gujjula R, and Mangadoddy N, Sep Purif Technol 138 (2014) 104.

    Article  Google Scholar 

  22. Zhang C, Wei D, Cui B, Li T, and Luo N, Powder Technol 305 (2017) 156.

    Article  Google Scholar 

  23. Hwang K J, and Chou S P, Sep Purif Technol 172 (2017) 76.

    Article  Google Scholar 

  24. Vakamalla T R, and Mangadoddy N, Sep Purif Technol 176 (2017) 23.

    Article  Google Scholar 

  25. Jain V, Rai B, Umesh V, Waghmare UV, Tammishetti V, and Pradip, Trans Indian Inst Met 66 (2013) 447.

    Article  Google Scholar 

  26. Tammishetti V, Kumar D, Rai B, Pradip, Shukla V, Patra A S, Chakraborty D P, and Kumar A, Trans Indian Inst Met 70 (2017) 411.

    Article  Google Scholar 

  27. Subramanian S, Pukkella A K, and Vysyaraju R, Indian Patent (Filed).

  28. Pukkella A K, Vysyaraju R, and Subramanian S, AIChE J (2018) (under review).

  29. Xu Y, Li Y, Zhang Y, Yang, and Wang H, Chem EngTechnol 39 (2016) 567.

    Article  Google Scholar 

  30. Subramanian S, Tammishetti V, Rai B, and Pradip, Int J Miner Process 146 (2016) 1.

    Article  Google Scholar 

  31. Narasimhan S, and Jordache C, Data Reconciliation and Gross Error Detection: An Intelligent Use of Process Data, Gulf Publishing Company, Houston (2000).

    Google Scholar 

  32. Plitt L R, and Kawatra S K, Int J Miner Process 5 (1979) 369.

    Article  Google Scholar 

  33. AIChE Equipment Testing Procedure, Particle Size Classifiers, Wiley, Hoboken (1993).

    Book  Google Scholar 

  34. Vakamalla T R, Koruprolu V B R, Arugonda R, and Mangadoddy N, Sep Purif Technol 175 (2017) 481.

    Article  Google Scholar 

  35. Zhu G, and Liow J L, Chem Eng Sci 111 (2014) 94.

    Article  Google Scholar 

  36. Bourgeois F, and Majumder A K, Powder Technol 237 (2013) 367.

    Article  Google Scholar 

  37. Nageswararao K, Chem Eng J 80 (2000) 251.

    Article  Google Scholar 

  38. Nageswararao K, and Karri B, Sep Purif Technol 158 (2016) 31.

    Article  Google Scholar 

  39. Nageswararao K, and Medronho R A, Int J Miner Process 132 (2014) 43.

    Article  Google Scholar 

Download references

Acknowledgements

The authors deeply acknowledge the support of Mr. K. Ananth Krishnan, CTO, Tata Consultancy Services (TCS), in pursuing this research. The authors are grateful to Dr. Pradip, Dr. Beena Rai, and Dr. Venkataramana Runkana for their guidance and encouragement. We express our thanks to our laboratory assistants Mr. Yasin Shaikh, Mr. Sudam Konelu, and Mr. Rupesh Shinde.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Subramanian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The corrected separation efficiencies have been calculated using Eq. (7). The bypass parameter Bp is calculated as the minimum separation efficiency obtained in the experimentally observed efficiency curve. In most of the curves, the minimum efficiency due to the fish-hook behavior is observed to be near the particle size of ~ 20 μm. The D25c, D50c, and D75c are then calculated from the corrected separation efficiency curves. From Fig. 9, it is observed that corrected separation efficiency is stable for variation in particle loading of 5 to 15 wt%. From Figs. 10 and 11, it can be seen that the corrected separation efficiency curves are improving with increase in the feed velocity and the number of turns.

Fig. 9
figure 9

Effect of particle loading on corrected separation efficiency of silica

Fig. 10
figure 10

Effect of feed velocity on corrected separation efficiency of silica

Fig. 11
figure 11

Effect of number of turns on corrected separation efficiency of silica

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysyaraju, R., Pukkella, A.K. & Subramanian, S. Experimental Investigation of Novel Enhanced Gravity Closed Spiral Classifier. Trans Indian Inst Met 72, 2239–2248 (2019). https://doi.org/10.1007/s12666-019-01589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01589-0

Keywords

Navigation