Skip to main content
Log in

Synthesis of α-WO3 Thin Film Using Pulsed Laser Deposition: Influence of Thickness on Optical and Electrical Properties

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present study reports the systematic study on the effect of film thickness on the optical and electrical properties of transparent tetragonal (α) WO3 phase, synthesized using pulsed laser deposition. The WO3 films of various thicknesses 250 ± 4 (S1), 350 ± 2 (S2), 750 ± 5 (S3) and 1150 ± 4 (S4) nm were obtained by varying the deposition time 8, 15, 30 and 60 min, respectively. The films were post-annealed at 500 °C for 1 h in the open atmosphere and extensively characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy, UV–Vis–NIR spectrophotometer and four-probe resistivity. The Rietveld analysis of XRD pattern revealed the presence of mixed orthorhombic and tetragonal crystalline phases in the S1 (250 ± 4 nm) film. A pure tetragonal crystalline phase of WO3 was observed in rest of the films. The Raman spectroscopic study also revealed the high-temperature WO3 phase formation. The grain size and surface roughness obtained from the AFM micrographs varied from 10 to 50 nm and 9.1 to 10.9 nm, respectively. The optical band gaps were found to decrease as 3.47, 3.28, 3.08 and 3.06 eV with the increase in the film thickness S1, S2, S3 and S4, respectively. The resistivity of the films was found to increase with an increase in film thickness. However, the decrease in the resistivity with an increase in the temperature revealed the semiconducting behavior of all the films. The activation energy was found to increase with the increase in the thickness of α-WO3 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Castro-Hurtado I, Tavera T, Yurrita P, Pérez N, Rodriguez A, Mandayo G G, Castaño E, Appl Surf Sci 276 (2013) 229.

    Article  Google Scholar 

  2. Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C, Opt Mater 29 (2007) 679.

    Article  Google Scholar 

  3. Malin B J, Gustavo B, Iryna V, Clas P, Hans A, Gunnar A N, Lars Ö, J Phys Condens Matter 25 (2013) 205502.

    Article  Google Scholar 

  4. Zou Y S, Zhang Y C, Lou D, Wang H P, Gu L, Dong Y H, Dou K, Song X F, Zeng H B, J Alloys Compd 583 (2014) 465.

    Article  Google Scholar 

  5. Niklasson G A, Granqvist C G, J Mater Chem 17 (2007) 127.

    Article  Google Scholar 

  6. Yang C, Chen J-F, Zeng X, Cheng D, Cao D, Ind Eng Chem Res 53 (2014)17981.

    Article  Google Scholar 

  7. Tahir M B, Nabi G, Rafique M, Khalid N R, Int J Environ Sci Technol 14 (2017) 2519.

    Article  Google Scholar 

  8. Su P-G, Peng Y-T, Sens Actuators B 193 (2014) 637.

    Article  Google Scholar 

  9. Woodward P M, Sleight A W, Vogt T, J Solid State Chem 131 (1997) 9.

    Article  Google Scholar 

  10. Righettoni M, Pratsinis S E, Mater Res Bull 59 (2014) 199.

    Article  Google Scholar 

  11. Boulova M, Lucazeau G, J Solid State Chem 167 (2002) 425.

    Article  Google Scholar 

  12. Ponzoni A, Comini E, Ferroni M, Sberveglieri G, Thin Solid Films 490 (2005) 81.

    Article  Google Scholar 

  13. Panda A K, Singh A, Thirumurugesan R, Kuppusami P, Mohandas E, J Instrum 10 (2015) 09014.

    Article  Google Scholar 

  14. Badilescu S, Ashrit P V, Solid State Ion 158 (2003) 187.

    Article  Google Scholar 

  15. Sobia A, Christopher S B, Simon C N, Ivan P P, Meas Sci Technol 19 (2008) 025203.

    Article  Google Scholar 

  16. Guojia F, Zuli L, Yao K L, J Phys D 34 (2001)2260.

    Article  Google Scholar 

  17. Yamamoto S, Inouye A, Yoshikawa M, Nucl Instrum Methods Phys Res B 266 (2008) 802.

    Article  Google Scholar 

  18. Stankova N E, Atanasov P A, Stanimirova T J, Dikovska A O, Eason R W, Appl Surf Sci 247 (2005) 401.

    Article  Google Scholar 

  19. Ramana C V, Utsunomiya S, Ewing R C, Julien C M, Becker U, J Phys Chem B 110 (2006) 10430.

    Article  Google Scholar 

  20. Fumiaki M, Eiichi H, Tomoaki I, Kenji E, Raj Kumar T, Jpn J Appl Phys 41 (2002) 5372.

    Article  Google Scholar 

  21. Mitsugi F, Hiraiwa E, Ikegami T, Ebihara K, Surf. Coat. Technol. 169–170 (2003) 553.

    Article  Google Scholar 

  22. Zhao Y, Feng Z-C, Liang Y, Sens. Actuators, B 66 (2000) 171.

    Article  Google Scholar 

  23. Smits F M. Bell Labs Tech J 37 (1958) 711.

    Article  Google Scholar 

  24. Rietveld H, Acta Crystallogr 22 (1967) 151.

    Article  Google Scholar 

  25. Rietveld H, J Appl Crystallogr 2 (1969) 65.

    Article  Google Scholar 

  26. Lutterotti L, Scardi P, J Appl Cryst 23 (1990) 246.

    Article  Google Scholar 

  27. Kubo T, Nishikitani Y, J Electrochem Soc 145 (1998)1729.

    Article  Google Scholar 

  28. Shigesato Y, Murayama A, Kamimori T, Matsuhiro K, Appl Surf Sci 33–34 (1988) 804.

    Article  Google Scholar 

  29. Wu W, Yu Q, Lian J, Bao J, Liu Z, Pei S-S, J Cryst Growth 312 (2010) 3147.

    Article  Google Scholar 

  30. Weckhuysen B M, Schoonheydt R A, Catal Today 49 (1999) 441.

    Article  Google Scholar 

  31. Dhonge B P, Mathews T, Sundari S T, Thinaharan C, Kamruddin M, Dash S, Tyagi A K, Appl Surf Sci 258 (2011) 1091.

    Article  Google Scholar 

  32. Ekimov A I, Efros A L, Onushchenko A A, Solid State Commun 56 (1985) 921.

    Article  Google Scholar 

  33. Aguir K, Lemire C, Lollman D B B, Sens Actuators B 84 (2002) 1.

    Article  Google Scholar 

  34. Kaneko H, Miyake K, Teramoto Y, J Appl Phys 53 (1982) 3070.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. S. Raju, Head PMD/MCG/IGCAR, and Dr. Saroja Saibaba, Associate Director MCG/IGCAR, for their constant encouragement and motivation during the project. Experimental support rendered by Ms. M. Jyothi and Dr. Niranjan Kumar (SND/MSG/IGCAR) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baban P. Dhonge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhonge, B.P., Singh, A., Panda, A.K. et al. Synthesis of α-WO3 Thin Film Using Pulsed Laser Deposition: Influence of Thickness on Optical and Electrical Properties. Trans Indian Inst Met 72, 733–740 (2019). https://doi.org/10.1007/s12666-018-1525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1525-3

Keywords

Navigation