Skip to main content
Log in

Plastic Deformation Characteristics of the Rotary ECAP with Two Different Routes

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study, 2D plain strain finite element simulation was conducted to analyze the rotary-equal channel angular pressing (R-ECAP) process. Two different routes were considered during simulations: one with applying unidirectional die rotation and another with alternative reversion of the direction of rotation (RR-ECAP). Plastic strain distribution, flow net, pressing force and damage development during these two R-ECAP routes were analyzed. Results showed that the pressing force increased with deformation passes and reached a steady state value. Also plastic strain distribution in the sample was more uniform in case of RR-ECAP process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Valiev R Z, Islamgoliev R K, and Alexandrov I V, Prog Mater Sci 45 (2000) 103. doi:10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  2. Horita Z, Furukawa M, Nemoto M, and Langdon T G, Mater Sci Technol 16 (2000) 1239. doi:10.1179/026708300101507091

    Article  Google Scholar 

  3. Langdon T G, J Mater Sci 42 (2007) 3388. doi:10.1007/s10853-006-1475-8

    Article  Google Scholar 

  4. Shin D H, and Park K T, Mater Sci Eng A 410411 (2005) 299. doi:10.1016/j.msea.2005.08.025

    Article  Google Scholar 

  5. Perez C J L, Gonzalez P, Garces Y J Mater Proc Technol 143144 (2003) 506. doi:10.1016/S0924-0136(03)00307-8

    Article  Google Scholar 

  6. Xu C Z, Wang Q J, Zeng M S, Zhu J W, Li D J, Huang M Q, Jia Q M, and Du Z Z, Mater Sci Eng A 459 (2007) 303. doi:10.1016/j.msea.2007.01.105

    Article  Google Scholar 

  7. Azushima A, and Aoki K, Mater Sci Eng A 337 (2002) 45. doi:10.1016/S0921-5093(02)00005-9

    Article  Google Scholar 

  8. Nakashima K, Horita Z, Nemoto M, and Langdon T G, Mater Sci Eng A 281 (2000) 82. doi:10.1016/S0921-5093(99)00744-3

    Article  Google Scholar 

  9. Raab G J, Valiev R Z, Lowe T C, and Zhu Y T, Mater Sci Eng A 382 (2004) 30. doi:10.1016/j.msea.2004.04.021

    Article  Google Scholar 

  10. Nishida Y, Arima H, Kim J, and Ando T, Scr Mater 45 (2001) 261. doi:10.1016/S1359-6462(01)00985-X

    Article  Google Scholar 

  11. Iwahashi Y, Wang J, Horita Z, Nemoto M, and Langdon T G, Scr Mater 35 (1996) 143. doi:10.1016/1359-6462(96)00107-8

    Article  Google Scholar 

  12. Nagasekhar A V, Hon Y T, and Seow H P, J Mater Proc Technol 192 (2007) 449. doi:10.1016/j.jmatprotec.2007.04.093

    Article  Google Scholar 

  13. Medeiros N, Lins J F C, Moreira L P, Gouvea J P, Mater Sci Eng A 489 (2008) 363. doi:10.1016/j.msea.2008.01.011

    Article  Google Scholar 

  14. Basavaraj V P, Chakkingal U, and Kumar T S P, J Mater Proc Technol 209 (2009) 89. doi:10.1016/j.jmatprotec.2008.01.031

    Article  Google Scholar 

  15. Suo T, Li Y, Guo Y, and Liu Y, Mater Sci Eng A 432 (2006) 269. doi:10.1016/j.msea.2006.06.035

    Article  Google Scholar 

  16. Cerri E, Marco P P D, and Leo P, J Mater Proc Technol 209 (2009) 1550. doi:10.1016/j.jmatprotec.2008.04.013

    Article  Google Scholar 

  17. Yoon S Ch, Seo M H, Krishnaiah A, and Kim H S, Mater Sci Eng A 490 (2008) 289. doi:10.1016/j.msea.2008.01.037

    Article  Google Scholar 

  18. Zhao Y H, Liao X Z, Jin Z, Valiev R Z, and Zhu Y T, Acta Mater 52 (2004) 4589. doi:10.1016/j.actamat.2004.06.017

    Article  Google Scholar 

  19. Park K T, Han S Y, Ahn B D, Shin D H, Lee Y K, and Um K K, Scr Mater 51 (2004) 909. doi:10.1016/j.scriptamat.2004.06.017

    Article  Google Scholar 

  20. Fukuda Y, Oh-ishi K, Horita Z, and Langdon T G, Acta Mater 50 (2002) 1359. doi:10.1016/S1359-6454(01)00441-4

    Article  Google Scholar 

  21. Figueiredoa R B, Cetlinb P R, and Langdon T G, Mater Sci Eng A 518 (2009) 124. doi:10.1016/j.msea.2009.04.007

    Article  Google Scholar 

  22. Figueiredoa R B, Cetlinb P R, and Langdon T G, Acta Mater 55 (2007) 4769. doi:10.1016/j.actamat.2007.04.043

    Article  Google Scholar 

  23. Luri R, Luis Perez C G, Salsedo D, Purtas I, Leon J, Perez I, and Fuertes J P, J Mater Proc Technol 211 (2011) 48. doi:10.1016/j.jmatprotec.2010.08.032

    Article  Google Scholar 

  24. Shaban Ghazani M, and Eghbali B, Model Num Simul Mater Sci 3 (2013) 27. doi:10.4236/mnsms.2013.31004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shaban Ghazani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaban Ghazani, M., Akbarpour, M.R. Plastic Deformation Characteristics of the Rotary ECAP with Two Different Routes. Trans Indian Inst Met 70, 2719–2724 (2017). https://doi.org/10.1007/s12666-017-1132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1132-8

Keywords

Navigation