Skip to main content
Log in

Effect of Environmental Pollution on Corrosion Characteristics of 3003 Aluminium Alloy Exposed in Different Parts of India

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Corrosion behaviour of 3003 grade of aluminum alloy is investigated by exposing its samples under different climatic and pollution zones of India namely Jamshedpur, New Delhi, Lucknow, Mumbai, Nagpur, Kolkata, Chennai and Palampur. Results indicate that pollutants in the atmosphere, especially PM10, considerably affect the corrosion rate. Electrochemical impedance spectroscopy and direct current anodic polarization studies indicate the formation of very protective film on specimens exposed to cleaner environments. Raman spectroscopy and XRD studies of the passive films formed on exposed samples help to explain the variation in corrosion rate of the metal in different climatic conditions. The deposition of fine particulates on the exposed surface of the samples are observed to act as a reservoir of corroding species by absorbing corrosive gases, moisture and anion and cation species resulting in the formation of corrosion cells. The mechanism for the breakdown of passive film resulting in accelerated rate of corrosion of the alloy exposed to polluted environments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Davood A, Pan J, Leygraf C, and Norgren S, J Electrochem Soc 155 (2008) C138.

    Article  Google Scholar 

  2. Zamin M, Corrosion 37 (1981) 627.

    Article  Google Scholar 

  3. Wang B, Zhang L, Su Y, Mou X, Xiao Y, and Liu J, Mater Des 50 (2013) 15.

    Article  Google Scholar 

  4. Anderson W A, and Stumpf H C, Corrosion 36 (1980) 212.

    Article  Google Scholar 

  5. Xiaoqun W G L, Acta Metall Sin Chin Ed 47 (2011) 361.

    Google Scholar 

  6. Vargel C, in Corrosion de l’ Aluminium, (ed) Vargel C, Dunod, Paris (1999), p 199.

  7. Liu Y, and Cheng Y F, Mater Corros 61 (2010) 211.

    Article  Google Scholar 

  8. Barton K, Protection Against Atmospheric Corrosion, Wiley, New York (1976), p 49.

    Google Scholar 

  9. Ailor W H, ASTM STP 646 (1978) 129.

    Google Scholar 

  10. Willam E, Proc Phys Soc Lond 30 (1926) 15.

    Google Scholar 

  11. Sutton R S, and Sellingmann R, Inst Met 60 (1938) 67.

    Google Scholar 

  12. Graedel T E, J Electrochem Soc 136 (1989) 204c.

    Article  Google Scholar 

  13. Ananth V, Subramanian G, Mohan P S, and Palraj S, Bull Electrochem 2 (1986) 541.

    Google Scholar 

  14. Parekh S P, Pandya A V, and Kadiya H K, Der Pharma Chem 5 (2013) 125.

    Google Scholar 

  15. Natesan M, Venkatachari G, and Palaniswamy N, Corros Sci 8 (2006) 3584.

    Article  Google Scholar 

  16. Natesan M, Muralidharan S, and Palaniswamy N, Mater Perform 49 (2010) 60.

    Google Scholar 

  17. Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide, Chapter 5, Report on WHO working group, Bonn, Germany (2013), available at www.euro.who.int/.

  18. Kim K-H, Kabir E, and Kabir S, Environ Int 74 (2015) 136.

    Article  Google Scholar 

  19. Evans U R, The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, Edward Arnold LTD., London (1960).

  20. Vernon W H J, R Soc Arts 97 (1949) 578.

    Google Scholar 

  21. Greenblatt J H, and Pearlman R, Chem Can 14 (1962) 21.

    Google Scholar 

  22. Sanyal B, and Singhania K, J Sci Ind Res (India) 15B (1956) 448.

    Google Scholar 

  23. Upham J B, J Air Pollut Control Assoc 17 (1967) 398. doi:10.1080/00022470.1967.10468998.

    Article  Google Scholar 

  24. ASTM G-50-10, Standard practice for conducting atmospheric corrosion tests on metals.

  25. ASTM G 1-72, Standard recommended practice for preparing, cleaning, and evaluating corrosion test specimens.

  26. Reddy K R, and Patrick WH Jr, CRC Crit Rev Environ Control 13 (1984) 273.

    Article  Google Scholar 

  27. Vernon W H J, Trans Faraday Soc 31 (1935) 1668.

    Article  Google Scholar 

  28. Hernandez L S, Miranda J M, Narvaez L, and Garcia G, CORROSION1998, March 22–27, 1998, San Diego Ca, NACE International, Manuscript ID98349.

  29. Scepanovic M J, Grujic-Brojcin M, Dohcevic-Mitrovic Z D, and Popovic Z V, Appl Phys A 86 (2007) 365.

    Article  Google Scholar 

  30. Spanier J E, Robinson R D, Zhang F, Chan S W, and Herman I P, Phys Rev B 64 (2001) 245407.

    Article  Google Scholar 

  31. Parker J C, and Siegel R W, Appl Phys Lett 57 (1990) 943.

    Article  Google Scholar 

  32. Böhni H H, and Uhlig H, J Electrochem Soc 116 (1969) 906.

    Article  Google Scholar 

  33. Lee W J, and Pyun S, Electrochim Acta 45 (2000) 1901.

    Article  Google Scholar 

  34. Available at: tamilnaduweatherman.blogspot.com.

  35. Pech-Canul M A, and Castro P, Cem Concr Res 32 (2002) 491.

    Article  Google Scholar 

  36. Vedalakshmi R, Saraswathy V, Sang H W, and Palaniswamy N, Corros Sci 51 (2009) 1299.

    Article  Google Scholar 

  37. Macdonald J R, Impedance Spectroscopy, Wiley, New York (1987).

    Google Scholar 

  38. Toloei A, Stoilov V, and Northwood D, in Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition, IMECE2013, November 13–21, 2013, San Diego, California, USA, available on internet www.researchgate.net/publication/267596825.

  39. Barton K, Werkst Korros 8/9 (1958) 547.

  40. Dan Z, Muto I, and Hara N, Constant Dew Point Corros Tests Met. doi:10.5772/57291.

  41. Sinclair J D, and Psota-Kelty L A, in Proceedings of 9th International Congress on Metallic Corrosion, Vol. 2, National Research Council of Canada, Ottawa, Canada (1984), p 296.

  42. Lobnig R E, Siconolfi D J, Maisano J, Grundmeier G, Sfreckel H, FrankenthaI R P, Stratmann M, and Sinclair J D, J Electrochem Soc 143 (1996) 1175.

    Article  Google Scholar 

  43. Nikolic C, Hydrolysis of Aluminum Sulphate Solutions at High Temperatures, 1971 URI http://hdl.handle.net/2429/34356.

Download references

Acknowledgments

The authors thank their respective organizations for rendering supports to accomplish this work. Logistic supports provided by CSIR laboratories of the exposure sites are also sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. N. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, A., Saha, D., Singh, J.K. et al. Effect of Environmental Pollution on Corrosion Characteristics of 3003 Aluminium Alloy Exposed in Different Parts of India. Trans Indian Inst Met 70, 1607–1620 (2017). https://doi.org/10.1007/s12666-016-0960-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0960-2

Keywords

Navigation