Skip to main content
Log in

Temperature dependence of the lowest frequency E g Raman mode in laser-synthesized anatase TiO2 nanopowder

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanosized titanium dioxide (TiO2) powder was prepared by a laser-induced pyrolysis. Specific surface area of the as-grown powder measured by BET method was 109 m2/g. The grain size (14.5 nm) estimated from these data coincides well with the crystallite size (12.3 nm) determined by XRD measurements. The average grain size (∼35 nm) obtained from the subsequent SEM measurements refers to considerable agglomeration of nanoparticles. Raman spectroscopy has been used to investigate the structural properties of TiO2 nanopowder and its anatase structure is confirmed. The blueshift and broadening of the lowest frequency Eg Raman mode at temperature range ∼25–550 K have been analyzed using a phonon-confinement model. Dominant influence of the strong anharmonic effect at higher temperatures was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Christensen, T.P. Curtis, T.A. Egerton, S.A.M. Kosa, J.R. Tinlin, Appl. Catal. B 41, 371 (2003)

    Article  Google Scholar 

  2. S.S. Hong, M.S. Lee, H.S. Hwang, K.T. Lim, S.S. Park, C.S. Ju, G.D. Lee, Sol. Energ. Mater. Sol. C 80, 273 (2003)

    Article  Google Scholar 

  3. B. Miller, E. Pujads, E. Gocke, Environ. Mol. Mutagen. 26, 240 (1995)

    Article  Google Scholar 

  4. V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin, B.C. Muddle, Phys. Rev. B 71, 184302 (2005)

    Article  ADS  Google Scholar 

  5. H. Zhang, J.F. Banfield, J. Mater. Chem. 8, 2073 (1998)

    Article  Google Scholar 

  6. A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Emst, K. Wegner, S.E. Pratsinis, J. Appl. Phys. 98, 074305 (2005)

    Article  ADS  Google Scholar 

  7. S. Kelly, F.H. Pollak, M. Tomkiewicz, J. Phys. Chem. B 101, 2730 (1997)

    Article  Google Scholar 

  8. D. Bersani, P.P. Lottici, Appl. Phys. Lett. 72, 73 (1998)

    Article  ADS  Google Scholar 

  9. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D Appl. Phys. 33, 912 (2000)

    Article  ADS  Google Scholar 

  10. J.C. Parker, R.W. Siegel, Appl. Phys. Lett. 57, 943 (1990)

    Article  ADS  Google Scholar 

  11. M.J. Šćepanović, M.U. Grujić-Brojčin, Z.D. Dohčević-Mitrović, Z.V. Popović, Mater. Sci. Forum 518, 101 (2006)

    Article  Google Scholar 

  12. K.R. Zhu, M.S. Zhang, Q. Chen, Z. Yin, Phys. Lett. A 340, 220 (2005)

    Article  ADS  Google Scholar 

  13. F. Curcio, M. Musci, N. Notaro, C. Nannetti, Appl. Surf. Sci. 36, 52 (1989)

    Article  ADS  Google Scholar 

  14. F. Curcio, M. Musci, N. Notaro, G. De Michele, Appl. Surf. Sci. 46, 225 (1990)

    Article  ADS  Google Scholar 

  15. T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978)

    Article  Google Scholar 

  16. P. Brüesch, Phonons: Theory and Experiments II (Springer, Berlin, 1986)

    Google Scholar 

  17. M.J. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R.E. Silverans, V.V. Moshchalkov, Phys. Rev. B 66, 161311 (2002)

    Article  ADS  Google Scholar 

  18. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)

    Article  ADS  Google Scholar 

  19. I.H. Campbell, P.M. Fauchet, Solid State Commun. 58, 739 (1984)

    Article  ADS  Google Scholar 

  20. J.E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman, Phys. Rev. B 64, 245407 (2001)

    Article  ADS  Google Scholar 

  21. D.R. Santos, I.L. Torriani, Solid State Commun. 85, 307 (1993)

    Article  Google Scholar 

  22. J. Nemanich, C.C. Tsai, G.A.N. Connell, Phys. Rev. Lett. 44, 273 (1980)

    Article  ADS  Google Scholar 

  23. K. Cai, M. Müller, J. Bossert, A. Rechtenbach, K.D. Jandt, Appl. Surf. Sci. 250, 252 (2005)

    Article  ADS  Google Scholar 

  24. M. Ivanda, S. Musić, M. Gotić, A. Turković, A.M. Tonejc, O. Gamulin, J. Mol. Struc. 480, 641 (1999)

    Article  Google Scholar 

  25. A. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, J.P. Jolivet, J. Mater. Chem. 13, 877 (2003)

    Article  Google Scholar 

  26. M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, Phys. Rev. B 66, 155213 (2002)

    Article  ADS  Google Scholar 

  27. M. Balkanski, R.F. Wallis, E. Haro, Phys. Rev. B 28, 1928 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J. Šćepanović.

Additional information

PACS

81.07.Wx; 78.30.-j; 63.22.+m

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šćepanović, M., Grujić-Brojčin, M., Dohčević-Mitrović, Z. et al. Temperature dependence of the lowest frequency E g Raman mode in laser-synthesized anatase TiO2 nanopowder. Appl. Phys. A 86, 365–371 (2007). https://doi.org/10.1007/s00339-006-3775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3775-x

Keywords

Navigation