Skip to main content
Log in

Microstructural Analysis of Multi-phase Ultra-Thin Oxide Overgrowth on Al–Mg Alloy by High Resolution Transmission Electron Microscopy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

High-resolution transmission electron microscopy analyses are carried out to understand the microstructure of the ultra-thin oxide-film grown on a (native) amorphous Al2O3-coated Al-0.8 at.% Mg alloy substrate at T = 600 K for t = 2 h and at pO2 of 1 × 10−2 Pa. This oxide-film is found to be non-uniformly thick with thicknesses varying from 1.50 to 4.60 nm. Occasionally, this oxide is found to diffuse into the Al–Mg alloy substrate, forming oxide thicknesses up to 10.5 nm. Overall, this oxide-film is found to consist of a mixed amorphous, (poly) crystalline and an intermediate amorphous-to-crystalline transition regions, with crystalline regions consisting mostly of MgO and the diffused oxide regions into the Al–Mg alloy substrate coated with γ-Al2O3. These observations are then compared with the experimental results obtained using angle-resolved X-ray Photoelectron Spectroscopy analysis and thermodynamic predictions for the growth of an ultra-thin oxide-film due to dry, thermal oxidation of Al–Mg alloy substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nolte P, Stierle A, Jin-Phillipp N Y, Kasper N, Schulli T U, and Dosch H, Science 321 (2008) 1654.

    Article  Google Scholar 

  2. Lyapin A, Jeurgens L P H, Graat P C J, and Mittemeijer E J, J Appl Phys 96 (2004) 7126.

    Article  Google Scholar 

  3. Jeurgens L P H, Vinodh M S, and Mittemeijer E J, Acta Mater. 56 (2008) 4621.

    Article  Google Scholar 

  4. Pasquarello A, and Stoneham A M, J Phys Condensed Matter 17 (2005) V1.

    Google Scholar 

  5. Freund H J, Surf Sci 601 (2007) 1438.

    Article  Google Scholar 

  6. Koyama M, Kamimuta Y, Koike M, Suzuki M, and Nishiyama A, Jpn J Appl Phys 43 (2004) 1788.

    Article  Google Scholar 

  7. Dai Z R, Pan Z W, and Wang Z L, Adv Funct Mater 13 (2003) 9.

    Article  Google Scholar 

  8. Comini E, Faglia G, Sberveglieri G, Pan Z, and Wang Z L, Appl Phys Lett 81 (2002) 1869.

    Article  Google Scholar 

  9. Gupta A, Li X W, and Xiao G, Appl Phys Lett 78 (2001) 1894.

    Article  Google Scholar 

  10. Jeurgens L P H, Wang Z M, and Mittemeijer E J, Int J Mater Res 100 (2009) 1281.

    Article  Google Scholar 

  11. Reichel F, Jeurgens L P H, and Mittemeijer E J, Acta Mater 56 (2008) 2897.

    Article  Google Scholar 

  12. Reichel F, Jeurgens L P H, Richter G, and Mittemeijer E J, J Appl Phys 103 (2008) 093515.

    Article  Google Scholar 

  13. Reichel F, Jeurgens L P H, Richter G, van Aken P A, and Mittemeijer E J, Acta Mater 55 (2007) 6027.

    Article  Google Scholar 

  14. Panda E, Jeurgens L P H, and Mittemeijer E J, Surf Sci 604 (2010) 588.

    Article  Google Scholar 

  15. Panda E, Jeurgens L P H, and Mittemeijer E J, Acta Mater 58 (2010) 1770.

    Article  Google Scholar 

  16. Snijders P C, Jeurgens L P H, and Sloof W G, Surf Sci 589 (2005) 98.

    Article  Google Scholar 

  17. Jeurgens L P H, Sloof W G, Tichelaar F D, and Mittemeijer E J, Thin Solid Films 418 (2002) 89.

    Article  Google Scholar 

  18. Lea C, and Molinari C, J Mater Sci 19 (1984) 2336.

    Article  Google Scholar 

  19. Lea C, and Ball J, Appl Surf Sci 17 (1984) 344.

    Article  Google Scholar 

  20. Brock A J, and Heine M A, J Electrochem Soc 119 (1972) 1124.

    Article  Google Scholar 

  21. Hart R K, and Maurin J K, Surf Sci 20 (1970) 285.

    Article  Google Scholar 

  22. Goldstein B, and Dresner J, Surf Sci 71 (1978) 15.

    Article  Google Scholar 

  23. Ritchie I M, Sanders J V, and Weickhardt P L, Oxid Met 1 (1971) 91.

    Article  Google Scholar 

  24. Doherty P E, and Davis R S, J Appl Phys 34 (1963) 619.

    Article  Google Scholar 

  25. Thomas K, and Roberts M W, J Appl Phys 32 (1961) 70.

    Article  Google Scholar 

  26. Bahadur A, J Mater Sci 22 (1987) 1941.

    Article  Google Scholar 

  27. van Beek H J, and Mittemeijer E J, Thin Solid Films 122 (1984) 131.

    Article  Google Scholar 

  28. Brock A J, and Pryor M J, Corros Sci 13 (1973) 199.

    Article  Google Scholar 

  29. Pryor M J, Oxid Met 3 (1971) 271.

    Article  Google Scholar 

  30. Smeltzer W, J Electrochem Soc 105 (1958) 67.

    Article  Google Scholar 

  31. Marton D, Josepovits V K, and Csandy A, Surf Interface Anal 1 (1979) 132.

    Article  Google Scholar 

  32. Scamans G, and Butler E P, Metall Trans A 6A (1975) 2055.

    Article  Google Scholar 

  33. Panda E, Jeurgens L P H, and Mittemeijer E J, J Appl Phys 106 (2009) 114913.

    Article  Google Scholar 

  34. Ajmera D, and Panda E, Corros Sci 102 (2016) 425.

    Article  Google Scholar 

  35. Oh S H, Kauffmann Y, Scheu C, Kaplan W D, and Ruehle M, Science 310 (2005) 661.

    Article  Google Scholar 

Download references

Acknowledgments

The experiments were carried out in Max Planck Institute for Intelligent Systems (formerly known as Max Planck Institute for Metals Research), Stuttgart, Germany. The authors are indebted to Prof. Eric J. Mittemeijer for the provision of oxidation and in situ AR-XPS and MBE facilities, Dr. Lars P.H. Jeurgens for his invaluable discussions, Dr. P.A. van Aken for the provision of TEM facilities, Dr. Gunther Richter for taking the HR-TEM images and to Mrs. U. Eigenthaler for the FIB preparation of the TEM lamellae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emila Panda.

Additional information

Narendra Bandaru and Darshan Ajmera have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandaru, N., Ajmera, D., Manwani, K. et al. Microstructural Analysis of Multi-phase Ultra-Thin Oxide Overgrowth on Al–Mg Alloy by High Resolution Transmission Electron Microscopy. Trans Indian Inst Met 70, 1269–1275 (2017). https://doi.org/10.1007/s12666-016-0920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0920-x

Keywords

Navigation