Skip to main content
Log in

Effect of Sintering Temperature on Properties of CNT/Al Composite Prepared by Capsule-Free Hot Isostatic Pressing Technique

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT)/Al composite powders were prepared by high energy ball milling technique. CNTs were well dispersed in Al matrix but the graphite structure of CNTs was significantly damaged during the mixing process. Dense composite was prepared by capsule free hot isostatic pressing technique. The best sintering temperature was determined to be 620 °C, at which relative density of sintered specimens increased to 92 % and decreased with the increase of CNT content due to the formation of CNT clusters. Microhardness of the composite could be improved by increasing CNT content up to 1 wt% with the highest value of 56.7 HV which was nearly two times higher than that of pure Al. Electrical resistivity was increased in proportion to the CNT content. The increase of resistivity was due to the effect of porosity, electron scattering at particle boundaries and existence of oxidation phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lloyd D J, Int Mater Rev 39 (1994) 1.

    Article  Google Scholar 

  2. Ibrahim I A, Mohamed F A, and Lavernia E, J Mater Sci 26 (1991) 1137.

    Article  Google Scholar 

  3. Torralba J M, Costa C E, Velasco F, J Mater Process Technol 133 (2003) 203.

    Article  Google Scholar 

  4. Bodunrina M O, Alaneme K K, Chown L H, J. Mater. Res. Technol. 4 (2015) 434.

    Article  Google Scholar 

  5. Canakci A, Arslan F, and Varol T, Mater Sci Technol 29 (2013) 954.

    Article  Google Scholar 

  6. Skrobian M, Krahulec J, Krivan P, Acta Metall Slovaca 20 (2014) 405.

    Article  Google Scholar 

  7. Bakshi S R, Lahiri D, Agarwal A, Int Mater Rev 55 (2010) 41.

    Article  Google Scholar 

  8. Tjong S C, Mater Sci Eng R 74 (2013) 281.

    Article  Google Scholar 

  9. Canakci A, Varol T, Cuvalci H, Erdemir F. and Ozkaya S, Sci. Eng. Compos. Mater. 22 (2015) 425.

    Article  Google Scholar 

  10. Wang H Y, Jiang Q C, Wang Y, Ma B X, Zhao F, Mater Lett 58 (2004) 3509.

    Article  Google Scholar 

  11. Bocchini G F, Int J Powder Metall 22 (1986) 185.

    Google Scholar 

  12. Cristofolini I, Rao A, Menapace C, Molinari A, J Mater Process Technol 210 (2010) 1716.

    Article  Google Scholar 

  13. Canakci A, Varol T, Nazik C, Mater Technol 27 (2012) 320.

    Article  Google Scholar 

  14. Simões S, Viana F, Reis M A L, Vieira M F, Compos Struct 108 (2014) 992.

    Article  Google Scholar 

  15. Li H P, Fan J W, Kang J L, Zhao N Q, Wang X X, Li B, Trans. Nonferrous Met. Soc. China 24 (2014) 2331.

    Article  Google Scholar 

  16. Kwon H, Estili M, Takagi K, Miyazaki T, and Kawasaki A, Carbon 47 (2009) 570.

    Article  Google Scholar 

  17. Liao J Z, Tan M J, Sridhar I, Mater Design 31 (2009) s96.

    Article  Google Scholar 

  18. Phuong D D, Trinh P V, An N V, Luan N V, Minh P N, Khisamov R K, Nazarov K S, Zubairov L R, Mulyukov R R, Nazarov A A. J Alloys Compd 613 (2014) 68.

    Article  Google Scholar 

  19. Tokunaga T, Kaneko K, Horita Z, Mater Sci Eng A 490 (2008) 300.

    Article  Google Scholar 

  20. Kurita H, Estili M, Kwon H et.al, Composites Part A 68 (2015)133.

    Article  Google Scholar 

  21. Bradbury C R, Gomon J K, Kollo L, Kwon H, and Leparoux M, J Alloys Compd 585 (2015) 362.

    Article  Google Scholar 

  22. Deng C F, Ma Y X, Zhang P, Zhang X X, Wang D Z, Mater Lett 62 (2008) 2301.

    Article  Google Scholar 

  23. Zhong R, Cong H, Hou P, Carbon 41 (2003) 848.

    Article  Google Scholar 

  24. Laurent Ch, Flahaut E, Peigney A, Carbon 48 (2010) 2994.

    Article  Google Scholar 

  25. Chen B, Li S, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K, Mater Design 72 (2015) 1.

    Article  Google Scholar 

  26. Poirier D, Gauvin R, Drew R A L, Composites: Part A 40 (2009) 1482.

    Article  Google Scholar 

  27. Jiang L, Li Z, Fan G, Cao L, Zhang D, Carbon 50 (2012) 1993.

    Article  Google Scholar 

  28. German R M, Powder Metallurgy Science. 2nd ed. Metal Powder Industries Federation, Princeton (1994), p. 261.

    Google Scholar 

  29. Esawi A M K., and Borady M A E, Compos Sci Technol 68 (2008) 486.

    Article  Google Scholar 

  30. Feng Y, Yuan H L, Zhang M, Mater Charact 55 (2005) 211.

    Article  Google Scholar 

  31. Wu Y, Kim G Y, J Mater Process Technol 211 (2011) 1341.

    Article  Google Scholar 

  32. Varol T and Canakci A, Met Mater Int 21 (2015) 704.

    Article  Google Scholar 

Download references

Acknowledgments

The Vietnamese authors acknowledge financial support from the Research and Development of Technology Program, Vietnam Academy of Science and Technology (VAST), project codes: VAST.03.03/12-13.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pham Van Trinh or Doan Dinh Phuong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Trinh, P., Van Luan, N., Minh, P.N. et al. Effect of Sintering Temperature on Properties of CNT/Al Composite Prepared by Capsule-Free Hot Isostatic Pressing Technique. Trans Indian Inst Met 70, 947–955 (2017). https://doi.org/10.1007/s12666-016-0886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0886-8

Keywords

Navigation