Skip to main content
Log in

Five-Parameter Grain Boundary Determination in Annealed Ferrite Structure Using Electron Backscatter Diffraction and Serial Sectioning Technique

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The SEM/electron back scattered diffraction and serial sectioning procedure have been used to study the five parameter description of grain boundaries in a polygonal ferrite microstructure of 9Cr-1Mo steel. A routine has been evolved to correlate the successive images of a selected region and determine the grain boundary plane morphology. The relative misorientation of the crystallites, in terms of misorientation angle-axis (ω,ȓ), the grain boundary inclination angles [azimuth (γ) and polar (β) angles], and the crystallographic description of the two meeting planes have been studied and compared with random distribution. The low-angle boundaries are found to be persistently present in higher amounts after the grain growth induced by extended annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klueh R L, Int Mater Rev 50 (2005) 287.

    Article  Google Scholar 

  2. Randle V J, Mater Sci 44 (2009) 4211.

    Article  Google Scholar 

  3. Humphreys F J, J Mater Sci 36 (2001) 3833.

    Article  Google Scholar 

  4. Randle V, Text Micro 20 (1993) 231.

    Article  Google Scholar 

  5. Saylor D M, Morawiec A, and Rohrer G S, Metall Mater Trans A 35 (2004) 1981.

    Article  Google Scholar 

  6. Karthikeyan T, and Saroja S, J Appl Crystallogr 46 (2013) 1221.

    Article  Google Scholar 

  7. Beladi H, Rohres G S, Rollett A D, Tari V, and Hodgson P D, Acta Mater 63 (2014) 86.

    Article  Google Scholar 

  8. Saylor D M, Dasher B S, Adams B L, and Rohrer G S, Metall Mater Trans A 35 (2004) 1981.

    Article  Google Scholar 

  9. Saylor D M, Dasher B S, Rollett A D, and Rohrer G S, Acta Mater 52 (2004) 3649.

    Article  Google Scholar 

  10. Rohrer G S, Randle V, Kimb C S, and Hu Y, Acta Mater 54 (2006) 4489.

    Article  Google Scholar 

  11. Doweney S T, Bembridge N, Kalu P N, Miller H M, Roherr G S, and Han K, J Mater Sci 42 (2007) 9543.

    Article  Google Scholar 

  12. Groeber M A, Haley B K, Uchic M D, Dimiduk D M, and Ghosh S, Mater Charact 57 (2006) 259.

    Article  Google Scholar 

  13. Xu W, Ferry M, Mateescu N, Cairney J M, and Humphreys F J, Mater Charact 58 (2007) 961.

    Article  Google Scholar 

  14. Uchic M D, Groeber M A, Dimiduka D M, and Simmons J P, Scr Mater 55 (2006) 23.

    Article  Google Scholar 

  15. Mandal S, Pradeep K G, Zaefferer S, and Raabe D, Scr Mater 81 (2014) 16.

    Article  Google Scholar 

  16. Randle V, Mater Charact 34 (1995) 29.

    Article  Google Scholar 

  17. Lewis A C, Bingert J F, Rowenhorst D J, Gupta A, Geltmacher A B, and Spanos G, Mat Sci Eng 418 (2006) 15.

    Article  Google Scholar 

  18. Lin F X, Godfray A, Jensen D J, and Winther G, Mater Charact 61 (2010) 1203.

    Article  Google Scholar 

  19. Uchic M D, in Methods for Microstructure-Property Relationships, (eds) Ghosh S, and Dimiduk D, Springer Science, New York (2011), p 31.

  20. Davies P, and Randle V, Mater Sci and Technol 17 (2001) 615.

    Google Scholar 

  21. Randle V, Acta Mater 46 (1997) 1459.

    Article  Google Scholar 

  22. Wall M A, Schwartz A J, and Nguyen L, Ultramicroscopy 88 (2001) 73.

    Article  Google Scholar 

  23. Karthikeyan T, Dash M K, Saroja S, and Vijayalakshmi M, Metall Mater Trans A 44 (2013) 1673.

    Article  Google Scholar 

  24. Pickering F B, Metall Technol 7 (1980) 409.

    Article  Google Scholar 

  25. Dieter G E, Mechanical Metallurgy, McGraw-hill, UK (1988).

    Google Scholar 

  26. Mackenzie J K, Biometrika 45 (1958) 229.

  27. Morawiec A, Scr Mater 61 (2009) 438.

    Article  Google Scholar 

  28. Beladi H, and Rohrer G S, Metall Mater Trans A 44 (2013) 115.

    Article  Google Scholar 

  29. Mackenzie J K, Acta Mater 12 (1964) 223.

    Article  Google Scholar 

  30. Howe J M, Aaronson H I, and Hirth J P, Acta Mater 48 (2000) 3977.

    Article  Google Scholar 

  31. Kurzydlowski K J, and Ralph B, The Quantitative Description of the Microstructure of Materials, CRC Press, USA (1995).

    Google Scholar 

  32. Reed R C, and Bhadeshia H K D H, Mater Sci Technol 8 (1992) 421.

    Article  Google Scholar 

  33. Bhadeshia H K D H, Prog Mater Sci 28 (1985) 321.

    Article  Google Scholar 

  34. Bhadeshia H K D H, Scr Mater 21 (1987) 1017.

    Google Scholar 

  35. Ricks R A, and Howell P R, Acta Mater 31 (1983) 853.

    Article  Google Scholar 

  36. Aaronson H I, and Reynolds W T, Scr Mater 21 (1987) 1599.

    Google Scholar 

  37. Nes E, Ryum N, and Hunderi O, Acta Metall 33 (1985) 11.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Dr. M. Vijayalakshmi, Associate Director, Physical Metallurgy Group, and Dr. T. Jayakumar, Former Director, Metallurgy and Materials Group, for their support and encouragement to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saroja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, M.K., Karthikeyan, T. & Saroja, S. Five-Parameter Grain Boundary Determination in Annealed Ferrite Structure Using Electron Backscatter Diffraction and Serial Sectioning Technique. Trans Indian Inst Met 70, 133–143 (2017). https://doi.org/10.1007/s12666-016-0868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0868-x

Keywords

Navigation