Skip to main content
Log in

Statistical Analysis of the Effect of Notches and Strain Rate on the Tensile Properties of Welded 6061 Aluminum Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper emphasizes on the effect of notches and crosshead speed on yield strength and ultimate tensile strength of a TIG welded butt joint. In this experimental study 120 × 30 × 3.2 mm3 welded double edge notched tensile specimens with four notch radii have been tested under uni-axial tensile loading at different crosshead speed. In the current work, the analysis of variance has been performed at 95 and 99 % confidence level to identify the significance of crosshead speed and notch radius in effecting the tensile properties. This study indicates that the crosshead speed is the main parameter which has the highest influence on the tensile properties of the welded components than notch. An attempt has been made to develop an empirical relationship to predict the tensile properties of TIG-welded 6061 aluminum alloy joints using non-linear regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambroziak A, and Korzeniowski M, Arch Civ Mech Eng 10 (2010) 5.

    Google Scholar 

  2. Mouritz A P, Gellert E, Burchill P, and Challis K, Compos Struct 53 (2001) 21.

    Article  Google Scholar 

  3. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, and Miller W, Mater Sci Eng A 280 (2000) 102.

    Article  Google Scholar 

  4. Canyurt O E, Int J Mech Sci 47 (2005) 1249.

    Article  Google Scholar 

  5. Xiao Z G, Chen T, and Zhao X L, Int J Fatigue 38 (2012) 57.

    Article  Google Scholar 

  6. Bruder T, Störzel K, Baumgartner J, and Hanselka H, Int J Fatigue 34 (2012) 86.

    Article  Google Scholar 

  7. Selvamani S T, and Palanikumar K, Measurement 53 (2014) 10.

    Article  Google Scholar 

  8. Imam M, Biswas K, and Racherla V, Mater Des 44 (2013) 23.

    Article  Google Scholar 

  9. Threadgill P L, Leonard A J, Shercliff H R, and Withers P J, Int Mater Rev 54 (2009) 49.

    Article  Google Scholar 

  10. Topic I, Höppel H W, and Göken M, Mater Sci Eng A 503 (2009) 163.

    Article  Google Scholar 

  11. Florea R S, Bammann D J, Yeldell A, Solanki K N, and Hammi Y, Mater Des 45 (2013) 456.

    Article  Google Scholar 

  12. Morgenstern C, Sonsino C M, Hobbacher A, and Sorbo F, Int J Fatigue 28 (2006) 881.

    Article  Google Scholar 

  13. Kumar A, and Sundarrajan S, Mater Des 30 (2009) 1288.

    Article  Google Scholar 

  14. Borrisutth R, Mitsomwang P, Rattanacha S, and Mutoh Y, Energy Res J 1 (2010) 82.

    Article  Google Scholar 

  15. Branco C M, Maddox S J, Infante V, and Gomes E C, Int J Fatigue 21 (1999) 587.

    Article  Google Scholar 

  16. Lillemäe I, Lammi H, Molter L, and Remes H, Int J Fatigue 44 (2012) 98.

    Article  Google Scholar 

  17. Nguyen N T, and Wahab M A, Eng Fract Mech 55 (1996) 453.

    Article  Google Scholar 

  18. Cui W, Wan Z, and Mansour A E, J Constr Steel Res 52 (1999) 159.

    Article  Google Scholar 

  19. Rajakumar S, Muralidharan C, and Balasubramanian V, Mater Des 32 (2011) 2878.

    Article  Google Scholar 

  20. Lakshminarayanan A K, Balasubramanian V, and Elangovan K, Int J Adv Manuf Technol 40 (2009) 286.

    Article  Google Scholar 

  21. Rajakumar S, Muralidharan C, and Balasubramanian V, Trans Nonferrous Met Soc China 20 (2010) 1863.

    Article  Google Scholar 

  22. Anawa E M, and Olabi A G, Opt Lasers Eng 46 (2008) 571.

    Article  Google Scholar 

  23. Vairamani G, Kumar T S, Malarvizhi S, and Balasubramanian V, Trans Nonferrous Met Soc China 23 (2013) 2250.

    Article  Google Scholar 

  24. Padmanaban G, and Balasubramanian V, Trans Nonferrous Met Soc China 21 (2011) 467.

    Article  Google Scholar 

  25. Rajakumar S, and Balasubramanian V, Mater Des 34 (2012) 242.

    Article  Google Scholar 

  26. Sinha A K, Kim D Y, and Ceglarek D, Opt Lasers Eng 51 (2013) 1143.

    Article  Google Scholar 

  27. Lipson L, and Sheth N J, Statistical design and analysis of engg. expts., McGraw Hill Kogakusha Ltd., Tokyo, Auckland, Sydney (1973).

Download references

Acknowledgments

The authors are thankful to the Dean, College of Technology, GBPUA&T Pantnagar, for providing all the necessary facilities for carrying out this investigation. The authors are also grateful to Dr. V. K. Singh, Professor, Mechanical Engineering Department, for his support in fabrication work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonika Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Singh, R. & Gope, P.C. Statistical Analysis of the Effect of Notches and Strain Rate on the Tensile Properties of Welded 6061 Aluminum Alloy. Trans Indian Inst Met 69, 1959–1967 (2016). https://doi.org/10.1007/s12666-016-0855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0855-2

Keywords

Navigation