Skip to main content
Log in

Characterisation of Mechanical Properties of Materials Using Innovative Small Specimen Testing Methods

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Mechanical properties of materials such as tensile, impact and creep properties, are characterised using standard test methods. These methods are generally material intensive. Impression creep (IC), small punch creep (SPC) and ball indentation (BI) are three innovative small specimen testing methods which can be used to determine the mechanical properties of materials. IC test is used to determine the creep deformation behavior of materials. SPC test is used to evaluate creep deformation and fracture properties of materials. Tensile, hardness, and fracture toughness can be evaluated using BI test method. Being material non-intensive, these testing methods have applications including materials development, structural integrity assessment for life extension of components, and characterization of mechanical properties of different microstructural zones in weld joints. This paper presents the results of detailed studies carried out using IC, SPC and BI testing techniques and discusses their relative advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Yang F, and Li J C M, Mater Sci Eng (R), 74 (2013) 233.

    Article  Google Scholar 

  2. Li J C M, and Chu S N G, Scr Mater, 13 (1979) 1021.

    Google Scholar 

  3. Samimi G, Mirdamadi S, Razavi H, and Boutorabi M, Mater Sci Eng, 587 (2013) 213.

    Article  Google Scholar 

  4. Chu S N G, and Li J C M, J Mater Sci Eng 39 (1979) 1.

    Article  Google Scholar 

  5. Naveena, Vijayanand V D, Ganesan V, Laha K, and Mathew M D, Mater Sci Eng A, 552 (2012) 112.

    Article  Google Scholar 

  6. Peng L, Yang F, Nie J-F, and Li J C M, Mater Sci Eng A, 410 (2005) 410.

    Google Scholar 

  7. Chiang D, and Li J C M, J Mater Res, 9 (1994) 903.

    Article  Google Scholar 

  8. Nayyeri G, and Mahmudi R, Mater Sci Eng A, 527 (2010) 2087.

    Article  Google Scholar 

  9. Hyde T H, Yehia K A, and Becker A A, Mater High Temp, 13 (1995) 133.

    Article  Google Scholar 

  10. Yu H Y, and Li J C M, J Mater Sci, 12 (1977) 2214.

    Article  Google Scholar 

  11. Mathew M D, Naveena, and Vijayanand V D, J Mater Eng Perform, 22 (2013) 492.

    Article  Google Scholar 

  12. Mathew M D, Naveena, and Vijayanand V D, J Mater Eng Perform, 22 (2013) 492.

    Article  Google Scholar 

  13. Naveena, Understanding Creep Deformation Behavior of 316LN Stainless Steel and Its Weld Joint Using Impression Creep Technique, Ph.D. Thesis (2014).

  14. Mathew M D, Laha K, and Ganesan V, Mater Sci Eng A, 535 (2012) 76.

    Article  Google Scholar 

  15. Mathew M D, Trans Indian Inst Met, 63 (2010) 151.

    Article  Google Scholar 

  16. Mathew M D, and Srinivasan V S, in Mechanical Behavior of Nitrogen-bearing steels in Monograph on High Nitrogen Steels and Stainless Steels, (eds) Mudali U K, and Raj B, Narosa Publications, New Delhi, 2004, p 182.

  17. Naveena, Vijayanand V D, Ganesan V, Laha K, and Mathew M D, Mater Sci Technol, 30 (2014) 1223.

    Google Scholar 

  18. Manahan M P, Argon A S, and Harling O K, J Nucl Mater, 103&104 (1981) 1545.

    Article  Google Scholar 

  19. Manahan M P, Nucl Technol, 63 (1983) 295.

    Google Scholar 

  20. Komazaki S, Sugimoto T, Hasegawa Y, and Kohno Y, ISIJ Intl 47 (2007) 1228.

    Article  Google Scholar 

  21. Komazaki S, Kato T, Kohno Y, and Tanigawa H, Mater Sci Eng A, 510–511 (2009) 229.

    Article  Google Scholar 

  22. Rouse J P, Cortellino F, Sun W, Hyde T H, and Shingledecker J, Mater Sci Technol 29 (2013) 1328.

    Article  Google Scholar 

  23. Hyde T H, Sun W, and Williams J A, Mater Sci Technol, 52 (2007) 213.

    Google Scholar 

  24. Hurst R, Matocha K, in Proc. Second Conference on Small Sample Test Techniques-Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques, Ostrava, 2012, p. 4.

  25. Blagoeva D T, and Hurst R C, Mater Sci Eng A, 511 (2009) 219.

    Article  Google Scholar 

  26. Small Punch Test Method for Metallic Materials Part 1: A Code of Practice for Small Punch Testing at Elevated Temperatures, Report No. CEN/WS 21, (2005).

  27. Bicego V, Persio Di, Rantale F and Hurst R, EPERC Technical Report No. 2, European Pressure Equipment Research Council, Berlin, Germany, 2003.

  28. Saucedo-Munoz M L, Komazaki S, Takahashi T, Hashida T, and Shoji T, J Mater Res, 17 (2002) 1945.

    Article  Google Scholar 

  29. Komazaki S, Hashida T, Shoji T, and Suzuki K, J Test Eval, 28 (2000) 249.

    Article  Google Scholar 

  30. Mathew M D, Kumar J, Ganesan V, and Laha K, Metall Mater Trans 45A (2014) 731.

    Article  Google Scholar 

  31. Haggag F M, ASTM STP, 1204 (1993), 27.

    Google Scholar 

  32. Mok C H, Exp Mech, 66 (1966) 87.

    Article  Google Scholar 

  33. Murty K L, Miraglia P Q, Mathew M D, Shah V N, and Haggag F M, Int J Press Vessels Pip, 76 (1999) 361.

    Article  Google Scholar 

  34. Mathew M D, and Murty K L, J Mater Sci, 34 (1999) 1497.

    Article  Google Scholar 

  35. Mathew M D, Lietzan L M, Murty K L, and Shah V N, Mater Sci Eng, 269 (1999) 186.

    Article  Google Scholar 

  36. Barbadikar D R, Ballal A R, Peshwe D R, and Mathew M D, Metall Trans A 46 (2015) 3459.

    Article  Google Scholar 

  37. Murty K L, Miraglia P Q, Mathew M D, Shah V N, and Haggag F M, Int J Press Vessels Pip, 76 (1999) 361.

    Article  Google Scholar 

  38. Mathew M D, Murty K L, Rao K B S, and Mannan S L, Mater Sci Eng A, 264 (1999) 159.

    Article  Google Scholar 

  39. Mathew M D, Ganesh Kumar J, Ganesan V, and Laha K, High Temperature Materials and Processes (2015). doi: 10.1515/htmp-2014-0114.

  40. Mathew M D, and Murty K L, J Mater Sci, 34 (1999) 1497.

    Article  Google Scholar 

  41. Murty K L, Mathew M D, Wang Y, Shah V N, and Haggag F M, Int J Press Vessels Pip, 75 (1998) 831.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contributions of several co-researchers at Indira Gandhi Centre for Atomic Research, India and North Carolina State University, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, M.D., Naveena & Ganesh Kumar, J. Characterisation of Mechanical Properties of Materials Using Innovative Small Specimen Testing Methods. Trans Indian Inst Met 69, 1871–1887 (2016). https://doi.org/10.1007/s12666-016-0847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0847-2

Keywords

Navigation